Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 352: 109784, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34932952

RESUMO

Disrupting the dynamics and structures of microtubules can perturb mitotic spindle formation, cause cell cycle arrest in G2/M phase, and subsequently lead to cellular death via apoptosis. In this investigation, the structure-based virtual screening methods, including molecular docking and rescoring, and similarity analysis of interaction molecular fingerprints, were developed to discover novel tubulin inhibitors from ChemDiv database with 1,601,806 compounds. The screened compounds were further filtered by PAINS, ADME/T, Toxscore, SAscore, and Drug-likeness analysis. Finally, 17 hit compounds were selected, and then submitted to the biologic evaluation. Among these hits, the P2 exhibited the strongest antiproliferative activity against four tumor cells including HeLa, HepG2, MCF-7, and A549. The in vitro tubulin polymerization assay revealed P2 could promote tubulin polymerization in a dose dependent manner. Finally, in order to analyze the interaction modes of complexes, the molecular dynamics simulation was performed to investigate the interactions between P2 and tubulin. The molecular dynamics simulation analysis showed that P2 could stably bind to taxane site, induced H6-H7, B9-B10, and M-loop regions changes. The ΔGbind energies of tubulin-P2 and tubulin-paclitaxel were -68.25 ± 12.98 and -146.05 ± 16.17 kJ mol-1, respectively, which were in line with the results of the experimental test. Therefore, P2 has been well characterized as lead compounds for developing new tubulin inhibitors with potential anticancer activity.


Assuntos
Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA