Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(5): 1115-1142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570712

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical function of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Apoptose/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas de Membrana , Proteínas Tirosina Quinases
2.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056895

RESUMO

BACKGROUND: Cancer immunotherapies can induce durable tumor regression, but most patients do not respond. SETD2 mutation has been linked to the efficacy of immune checkpoint inhibitors (ICIs) immunotherapy. The functional importance of the SETD2 inactivation and how to modulate immunotherapy response remains unclear. METHODS: To explore the function of SETD2 in immunotherapy, knockout and subsequent functional experiments were conducted. Bulk RNA-seq, ATAC-seq, Chip-seq and single-cell RNA-seq were performed to dissect the mechanism and explore the immune microenvironment of mouse tumor. Flow cytometry was used to assess cell surface antigen and intratumoral T cell levels. RESULTS: We comprehensively determine the effect of SETD2 inactivation in ICIs therapy and elucidate the mechanistic impact on tumor immunity. Murine syngeneic tumors harboring Setd2 inactivation are sensitive to ICIs. By bulk and single-cell RNA-seq, we further reveal that SETD2 inactivation reprograms intratumoral immune cells and inflames the tumor microenvironment, which is characterized by high infiltration of T cells and enhanced antigen presentation to activate CD8+ T cell-mediated killing. Mechanistically, via an integrated multiomics analysis using ATAC-seq, ChIP-seq and RNA-seq, we demonstrate that SETD2 inactivation reduces NR2F1 transcription by impairing H3K36me3 deposition and chromatin accessibility, which activates the STAT1 signaling pathway to promote chemokines and programmed cell death protein-1 (PD-1) expression and enhance antigen presentation. All these regulatory mechanisms synergistically promote the effects of anti-programmed cell death ligand 1 immunotherapy in Setd2-knockout syngeneic mouse models. The SETD2-NR2F1-STAT1 regulatory axis is conserved in human and murine cancers. Finally, cancer patients harboring SETD2 mutations who received ICIs show increased durable clinical benefits and survival. CONCLUSIONS: These findings provide novel insights into the biology of SETD2 inactivation regulation and reveal a new potential therapeutic biomarker for ICIs immunotherapy in various refractory cancers.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Biomarcadores , Imunoterapia , Microambiente Tumoral , Fator I de Transcrição COUP/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo
3.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34143182

RESUMO

Central precocious puberty (CPP), largely caused by germline mutations in the MKRN3 gene, has been epidemiologically linked to cancers. MKRN3 is frequently mutated in non-small cell lung cancers (NSCLCs) with five cohorts. Genomic MKRN3 aberrations are significantly enriched in NSCLC samples harboring oncogenic KRAS mutations. Low MKRN3 expression levels correlate with poor patient survival. Reconstitution of MKRN3 in MKRN3-inactivated NSCLC cells directly abrogates in vitro and in vivo tumor growth and proliferation. MKRN3 knockout mice are susceptible to urethane-induced lung cancer, and lung cell-specific knockout of endogenous MKRN3 accelerates NSCLC tumorigenesis in vivo. A mass spectrometry-based proteomics screen identified PABPC1 as a major substrate for MKRN3. The tumor suppressor function of MKRN3 is dependent on its E3 ligase activity, and MKRN3 missense mutations identified in patients substantially compromise MKRN3-mediated PABPC1 ubiquitination. Furthermore, MKRN3 modulates cell proliferation through PABPC1 nonproteolytic ubiquitination and subsequently, PABPC1-mediated global protein synthesis. Our integrated approaches demonstrate that the CPP-associated gene MKRN3 is a tumor suppressor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Ligação Proteica , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , Análise de Sobrevida , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Uretana
4.
Carcinogenesis ; 41(1): 44-55, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31046123

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with few therapeutic options, representing one of the great challenges in oncology. Activating KRAS mutation, occurring in >90% PDACs, is present in pancreatic intraepithelial neoplasia lesions, the precursor ductal lesions of PDAC, indicating additional genetic alterations contribute to the pathogenesis of PDAC. PDAC sequencing projects identify recurrent genomic ERBB2 alterations, mutations and amplifications, in 8.5% of PDAC patients, ranking as the top hit among the 100 receptor tyrosine kinases-encoding genes. Introduction of the ERBB2 mutations encoding protein variants S310F, S423R, R678Q, Q679L, E717D, L755S, V777L and V842I into human pancreatic epithelial cells causes oncogenic transformation, increasing ERBB2 signaling, anchorage-independent cell growth and tumor xenograft growth in nude mice, demonstrating that they are activating mutations. Interestingly, in many PDACs, mutations in ERBB2 and KRAS occur together. ERBB2 activating mutants facilitate KRAS-driven oncogenic properties. Introduction of ERBB2 mutations into KRAS-mutant PDAC cells activates ERBB2 signaling, promotes tumor growth and attenuates KRAS dependency. In contrast, a CRISPR-mediated knockout (KO) of ERBB2 in ERBB2-amplified PDAC cells inhibits ERBB2 signaling, colony formation, anchorage-independent growth and tumor xenograft formation. Finally, oncogenic ERBB2 aberrations can be abrogated by treatment with small-molecule inhibitors. ERBB2 and KRAS inhibition cooperate to suppress PDAC cell growth in vitro and to promote tumor regression in nude mice, providing a rationale for testing an anti-ERBB2 drug in combination with a KRAS inhibitor in ERBB2-mutant PDAC patients that are currently untreatable.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Progressão da Doença , Sinergismo Farmacológico , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 116(45): 22746-22753, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636198

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most common human sarcoma and are initiated by activating mutations in the KIT or PDGFRA receptor tyrosine kinases. Chromosome 22q deletions are well-recognized frequent abnormalities in GISTs, occurring in ∼50% of GISTs. These deletions are thought to contribute to the pathogenesis of this disease via currently unidentified tumor suppressor mechanisms. Using whole exome sequencing, we report recurrent genomic inactivated DEPDC5 gene mutations in GISTs (16.4%, 9 of 55 patients). The demonstration of clonal DEPDC5 inactivation mutations in longitudinal specimens and in multiple metastases from individual patients suggests that these mutations have tumorigenic roles in GIST progression. DEPDC5 inactivation promotes GIST tumor growth in vitro and in nude mice. DEPDC5 reduces cell proliferation through the mTORC1-signaling pathway and subsequently induces cell-cycle arrest. Furthermore, DEPDC5 modulates the sensitivity of GIST to KIT inhibitors, and the combination therapy with mTOR inhibitor and KIT inhibitor may work better in GIST patients with DEPDC5 inactivation. These findings of recurrent genomic alterations, together with functional data, validate the DEPDC5 as a bona fide tumor suppressor contributing to GIST progression and a biologically relevant target of the frequent chromosome 22q deletions.


Assuntos
Proteínas Ativadoras de GTPase/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Animais , Deleção Cromossômica , Cromossomos Humanos Par 22 , Progressão da Doença , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/patologia , Xenoenxertos , Humanos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA