Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(5): 567-578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080661

RESUMO

Protein kinase CK2 is a constitutively active and ubiquitously expressed serine/threonine kinase that is closely associated with various types of cancers, autoimmune disorders, and inflammation. However, the role of CK2 in psoriasis remains unknown. Herein, the study indicated elevated expression of CK2 in skin lesions from patients with psoriasis and from psoriasis-like mice. In the psoriasis-like mouse model, the CK2-specific inhibitor CX-4945 ameliorated imiquimod-induced psoriasis symptoms with reduced proliferation, abnormal differentiation, inflammatory cytokine production (especially IL-17A) of keratinocytes, and infiltration of γδ T cells. In in vitro studies, exogenous CK2 promoted hyperproliferation and abnormal differentiation of human keratinocytes, which were reversed by the suppression of CK2 with CX-4945 or siRNA. Furthermore, knockdown of CK2 reduced IL-17A expression and abolished IL-17A-induced proliferation and inflammatory cytokine expression in keratinocytes. Interestingly, IL-17A increased the expression of CK2 in keratinocytes, thereby establishing a positive feedback loop. In addition, suppression of CK2 inhibited the activation of STAT3 and Akt signaling pathways in human keratinocytes and imiquimod-induced psoriatic lesions of mice. These findings indicate that a highly expressed CK2 level in the skin lesions is required in the development of psoriasis by promoting epidermal hyperplasia, abnormal differentiation, and inflammatory response via regulation of the STAT3 and Akt signaling pathways. CK2 may be a target for the treatment of psoriasis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Psoríase , Animais , Humanos , Camundongos , Caseína Quinase II/metabolismo , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Oncogene ; 41(9): 1352-1363, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013621

RESUMO

Poor prognosis of head and neck squamous cell carcinomas (HNSCCs) results from resistance to chemotherapy and radiotherapy. To uncover the drivers of HNSCC resistance, including stemness and hypoxia, in this study, we compared the gene expression between CD44+ and CD44- HNSCC cells and assessed the correlation of CD44 and hypoxia-inducible factor 1α (HIF-1α) expression with mouse features and outcomes of patients with HNSCC. We combined the knockdown or activation of HIF-1α with in vitro and in vivo assays to evaluate effects on stemness and resistance of HNSCC cells. Analysis of clinical data showed that activation of HIF-1α in CD44+ patients with HNSCC was correlated with worse prognosis. Functional assays showed that HIF-1α promoted stemness, resistance, and epithelial-mesenchymal transition in HNSCC CD44+ cells. HIF-1α activated NOTCH1 signaling in HNSCC stem-like cells characterized by CD44 expression. Moreover, inhibition of these signaling proteins using shRNA or Evofosfamide (Evo) development for cancer treatment, reversed chemoresistance in vitro and in vivo. Taken together, our results indicated that targeting HIF-1α attenuated NOTCH1-induced stemness, which regulates responses to chemotherapy or radiotherapy and malignancy in CD44+ HNSCCs. HIF-1α/NOTCH1 signaling may represent a target for HNSCC treatment.


Assuntos
Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA