Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 2808-2820, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426933

RESUMO

Chemical modifications in RNAs play crucial roles in diversifying their structures and regulating numerous biochemical processes. Since the 1990s, several hydrophobic prenyl-modifications have been discovered in various RNAs. Prenyl groups serve as precursors for terpenes and many other biological molecules. The processes of prenylation in different macromolecules have been extensively studied. We introduce here a novel chemical biology toolkit that not only labels i6A, a prenyl-modified RNA residue, by leveraging the unique reactivity of the prenyl group, but also provides a general strategy to incorporate fluorescence functionalities into RNAs for molecular tracking purposes. Our findings revealed that iodine-mediated cyclization reactions of the prenyl group occur rapidly, transforming i6A from a hydrogen-bond acceptor to a donor. Based on this reactivity, we developed an Iodine-Mediated Cyclization and Reverse Transcription (IMCRT) tRNA-seq method, which can profile all nine endogenous tRNAs containing i6A residues in Saccharomyces cerevisiae with single-base resolution. Furthermore, under stress conditions, we observed a decline in i6A levels in budding yeast, accompanied by significant decrease of mutation rate at A37 position. Thus, the IMCRT tRNA-seq method not only permits semi-quantification of i6A levels in tRNAs but also holds potential for transcriptome-wide detection and analysis of various RNA species containing i6A modifications.


Assuntos
Isopenteniladenosina , Processamento Pós-Transcricional do RNA , RNA de Transferência , Iodo , Neopreno , RNA de Transferência/metabolismo , Saccharomyces cerevisiae , Análise de Sequência de RNA
2.
Front Chem ; 12: 1330378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312345

RESUMO

The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.

3.
ACS Chem Biol ; 19(2): 348-356, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38252964

RESUMO

A-to-I editing catalyzed by adenosine deaminase acting on RNAs impacts numerous physiological and biochemical processes that are essential for cellular functions and is a big contributor to the infectivity of certain RNA viruses. The outcome of this deamination leads to changes in the eukaryotic transcriptome functionally resembling A-G transitions since inosine preferentially pairs with cytosine. Moreover, hyper-editing or multiple A to G transitions in clusters were detected in measles virus. Inosine modifications either directly on viral RNA or on cellular RNA can have antiviral or pro-viral repercussions. While many of the significant roles of inosine in cellular RNAs are well understood, the effects of hyper-editing of A to I on viral polymerase activity during RNA replication remain elusive. Moreover, biological strategies such as molecular cloning and RNA-seq for transcriptomic interrogation rely on RT-polymerase chain reaction with little to no emphasis placed on the first step, reverse transcription, which may reshape the sequencing results when hypermodification is present. In this study, we systematically explore the influence of inosine modification, varying the number and position of inosines, on decoding outcomes using three different reverse transcriptases (RTs) followed by standard Sanger sequencing. We find that inosine alone or in clusters can differentially affect the RT activity. To gain structural insights into the accommodation of inosine in the polymerase site of HIV-1 reverse transcriptase (HIV-1-RT) and how this structural context affects the base pairing rules for inosine, we performed molecular dynamics simulations of the HIV-1-RT. The simulations highlight the importance of the protein-nucleotide interaction as a critical factor in deciphering the base pairing behavior of inosine clusters. This effort sets the groundwork for decrypting the physiological significance of inosine and linking the fidelity of reverse transcriptase and the possible diverse transcription outcomes of cellular RNAs and/or viral RNAs where hyper-edited inosines are present in the transcripts.


Assuntos
RNA Viral , Transcrição Reversa , Pareamento de Bases , RNA Viral/genética , Inosina/análise , Inosina/química , Inosina/genética , Adenosina Desaminase/genética
4.
Bio Protoc ; 12(24)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36618093

RESUMO

Atherosclerosis, a condition characterized by thickening of the arteries due to lipid deposition, is the major contributor to and hallmark of cardiovascular disease. Although great progress has been made in lowering the lipid plaques in patients, the conventional therapies fail to address the needs of those that are intolerant or non-responsive to the treatment. Therefore, additional novel therapeutic approaches are warranted. We have previously shown that increasing the cellular amounts of microRNA-30c (miR-30c) with the aid of viral vectors or liposomes can successfully reduce plasma cholesterol and atherosclerosis in mice. To avoid the use of viruses and liposomes, we have developed new methods to synthesize novel miR-30c analogs with increasing potency and efficacy, including 2'-O-methyl (2'OMe), 2'-fluoro (2'F), pseudouridine (á´ª), phosphorothioate (PS), and N-acetylgalactosamine (GalNAc). The discovery of these modifications has profoundly impacted the modern RNA therapeutics, as evidenced by their increased nuclease stability and reduction in immune responses. We show that modifications on the passenger strand of miR-30c not only stabilize the duplex but also aid in a more readily uptake by the cells without the aid of viral vectors or lipid emulsions. After uptake, the analogs with PS linkages and GalNAc-modified ribonucleotides significantly reduce the secretion of apolipoprotein B (ApoB) without affecting apolipoprotein A1 (ApoA1) in human hepatoma Huh-7 cells. We envision an enormous potential for these modified miR-30c analogs in therapeutic intervention for treating cardiovascular diseases. This protocol was validated in: J Biol Chem (2021), DOI: 10.1016/j.jbc.2022.101813.

5.
RNA Biol ; 17(11): 1560-1575, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31994439

RESUMO

RNA plays essential roles in not only translating nucleic acids into proteins, but also in gene regulation, environmental interactions and many human diseases. Nature uses over 150 chemical modifications to decorate RNA and diversify its functions. With the fast-growing RNA research in the burgeoning field of 'epitranscriptome', a term describes post-transcriptional RNA modifications that can dynamically change the transcriptome, it becomes clear that these modifications participate in modulating gene expression and controlling the cell fate, thereby igniting the new interests in RNA-based drug discovery. The dynamics of these RNA chemical modifications is orchestrated by coordinated actions of an array of writer, reader and eraser proteins. Deregulated expression of these RNA modifying proteins can lead to many human diseases including cancer. In this review, we highlight several critical modifications, namely m6A, m1A, m5C, inosine and pseudouridine, in both coding and non-coding RNAs. In parallel, we present a few other cancer-related tRNA and rRNA modifications. We further discuss their roles in cancer promotion or tumour suppression. Understanding the molecular mechanisms underlying the biogenesis and turnover of these RNA modifications will be of great significance in the design and development of novel anticancer drugs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA/genética , Adenosina/análogos & derivados , Animais , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Humanos , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Transcriptoma
6.
Photochem Photobiol ; 88(5): 1083-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22372381

RESUMO

Skin cancer is the most common form of cancer diagnosed in the United States. Exposure to solar ultraviolet (UV) radiations is believed to be the primary cause for skin cancer. Excessive UV radiation can lead to genetic mutations and damage in the skin's cellular DNA that in turn can lead to skin cancer. Lately, chemoprevention by administering naturally occurring non-toxic dietary compounds has proven to be a potential strategy to prevent the occurrence of tumors. Attention has been drawn toward several natural dietary agents such as resveratrol, one of the major components found in grapes, red wines, berries and peanuts, proanthocyanidins from grape seeds, (-)-epigallocatechin-3-gallate from green tea, etc. However, the effect these dietary agents have on the immune system and the immunological mechanisms involved therein are still being explored. In this review, we shall focus on the role of key chemopreventive agents on various immune cells and discuss their potential as antitumor agents with an immunological perspective.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Produtos Biológicos/farmacologia , Carcinoma/prevenção & controle , Imunidade Inata/efeitos dos fármacos , Melanoma/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Pele/imunologia , Imunidade Adaptativa/efeitos da radiação , Carcinoma/etiologia , Carcinoma/imunologia , Catequina/análogos & derivados , Catequina/farmacologia , Dieta , Humanos , Imunidade Inata/efeitos da radiação , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/imunologia , Proantocianidinas/farmacologia , Resveratrol , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/imunologia , Estilbenos/farmacologia , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA