Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(23): 10347-10361, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37930368

RESUMO

Liver fibrosis (LF) is an important reparative process in response to acute or chronic hepatic injury, which has the potential to advance towards cirrhosis and hepatocellular carcinoma. Dietary naringin consumption contributes to protection against LF in animal studies, while the exact protective mechanism of naringin remains unclear. This study aimed to investigate the molecular mechanisms behind the potential protective effect of naringin against TAA-induced LF in zebrafish. In this study, we utilized zebrafish to create the LF model and investigate the therapeutic mechanism of naringin. Firstly, we evaluated the changes in hepatic fibrosis and lipid accumulation in the liver following naringin treatment with oil red O, Nile red, and Sirius red and immunohistochemistry. In addition, we employed an ROS probe to directly measure oxidative stress and monitor inflammatory cell migration in a zebrafish transgenic line. Morpholino was used in the knockdown of IDO1 in order to verify its vital role in LF. Our findings demonstrated that naringin exhibited anti-inflammatory and anti-fibrotic action in conjunction with a reversal in lipid accumulation, oxidative stress and suppression of macrophage infiltration and activation of hepatic stellate cells. Furthermore, the results showed that the antifibrotic effect of naringin was removed upon IDO1 knockdown, proving that naringin exerts a protective effect by regulating IDO1. Naringin demonstrates remarkable protective effects against LF, effectively counteracting inflammation and hepatic steatosis in zebrafish liver. These findings suggest that naringin may function as an effective IDO1 inhibitor, holding the potential for clinical translation as a therapeutic agent for the treatment of LF.


Assuntos
Metabolismo dos Lipídeos , Peixe-Zebra , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Lipídeos/farmacologia
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(4): 505-511, 2016 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-28446404

RESUMO

OBJECTIVE: To investigate the protective effects of irbesartan against cardiac inflammation associated with diabetes and obesity in the db/db mouse model of type 2 diabetes and explore the underlying mechanisms. METHODS: Twenty- four 10-week-old diabetic db/db mice were equally randomized into irbesartan treatment (50 mg/kg per day) group and model group, using 12 nondiabetic littermates (db/+) as the controls, The mice were treated with irbesartan or saline vehicle for 16 consecutive weeks, after which the heart pathology was observed and the heart weight, body weight, and serum levels of fasting blood glucose (FBG), total cholesterol(TC), and triglycerides(TG) were measured. The expression of nuclear factor-kappaB (NF-κB) p65 in the myocardium was assessed with immunohistochemistry, the protein levels of P-IκBα ,IκBα and ß-actin were analyzed with Western blotting, and the pro-inflammatory cytokines IL-6 and TNF-α mRNA were detected using quantitative real-time PCR (qPCR). RESULTS: Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia and hyperlipidemia (P<0.01). Histopathological examination of the heart tissue revealed inflammatory cell infiltration, increased myocardial interstitium and disorders of myocardial fiber arrangement. The diabetic mice showed increased P-IαBα and decreased IκBα protein levels, enhanced activity and expression of NF-κB in the hearts, and increased mRNA expression of IL-6 and TNF-α in the myocardium. These abnormalities were all associated with increased inflammatory response. Treatment with irbesartan improved the heart architecture and attenuated high glucose-induced inflammation in the diabetic mice. CONCLUSION: Treatment with irbesartan attenuates cardiac inflammation in type 2 diabetic db/db mice, and this effect was probably associated with the suppression of cardiac angiotensin II and NF-κB signaling pathway.


Assuntos
Compostos de Bifenilo/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Inflamação/tratamento farmacológico , Tetrazóis/farmacologia , Actinas/metabolismo , Angiotensina II/metabolismo , Animais , Interleucina-6/metabolismo , Irbesartana , Camundongos , Obesidade/complicações , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA