Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113877, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421869

RESUMO

Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Proteômica , Neoplasias Hepáticas/tratamento farmacológico , Terapia Combinada
2.
Nat Commun ; 15(1): 621, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245530

RESUMO

Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos de Fenilureia , Quinolinas , Humanos , Oxaliplatina/uso terapêutico , Gencitabina , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Linfócitos T CD8-Positivos , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Proteínas Reguladoras de Apoptose , Receptores Depuradores
3.
Adv Sci (Weinh) ; 10(29): e2301928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37705495

RESUMO

The combination of immunotherapy and molecular targeted therapy exhibits promising therapeutic efficacy in hepatocellular carcinoma (HCC), but the underlying mechanism is still unclear. Here, phosphoglycerate mutase 1 (PGAM1) is identified as a novel immunometabolic target by using a bioinformatic algorithm based on multiple HCC datasets. PGAM1 is highly expressed in HCC and associated with a poor prognosis and a poor response to immunotherapy. In vitro and in vivo experiments indicate that targeting PGAM1 inhibited HCC cell growth and promoted the infiltration of CD8+ T-cells due to decreased enzymatic activity. Mechanistically, inhibition of PGAM1 promotes HCC cell ferroptosis by downregulating Lipocalin (LCN2) by inducing energy stress and ROS-dependent AKT inhibition, which can also downregulate Programmed death 1-ligand 1 (PD-L1). Moreover, an allosteric PGAM1 inhibitor (KH3) exhibits good antitumor effects in patient-derived xenograft (PDX) models and enhanced the efficacy of anti-PD-1 immunotherapy in subcutaneous and orthotopic HCC models. Taken together, the findings demonstrate that PGAM1 inhibition exerts an antitumor effect by promoting ferroptosis and CD8+ T-cell infiltration and can synergize with anti-PD-1 immunotherapy in HCC. Targeting PGAM1 can be a promising new strategy of "killing two birds with one stone" for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfoglicerato Mutase/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia
4.
BMC Pregnancy Childbirth ; 23(1): 447, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322435

RESUMO

PURPOSE: We aimed to study the association between adjusted mtDNA levels in human trophectoderm biopsy samples and the developmental potential of euploid and mosaic blastocysts. METHODS: We analyzed relative mtDNA levels in 2,814 blastocysts obtained from 576 couples undergoing preimplantation genetic testing for aneuploidy from June 2018 to June 2021. All patients underwent in vitro fertilization in a single clinic; the study was blinded-mtDNA content was unknown at the time of single embryo transfer. The fate of the euploid or mosaic embryos transferred was compared with mtDNA levels. RESULTS: Euploid embryos had lower mtDNA than aneuploid and mosaic embryos. Embryos biopsied on Day 5 had higher mtDNA than those biopsied on Day 6. No difference was detected in mtDNA scores between embryos derived from oocytes of different maternal ages. Linear mixed model suggested that blastulation rate was associated with mtDNA score. Moreover, the specific next-generation sequencing platform used have a significant effect on the observed mtDNA content. Euploid embryos with higher mtDNA content presented significantly higher miscarriage rates and lower live birth rates, while no significant difference was observed in the mosaic cohort. CONCLUSION: Our results will aid in improving methods for analyzing the association between mtDNA level and blastocyst viability.


Assuntos
DNA Mitocondrial , Fertilização in vitro , Feminino , Humanos , Aneuploidia , Blastocisto , DNA Mitocondrial/genética , Fertilização in vitro/métodos , Testes Genéticos/métodos , Idade Materna , Estudos Retrospectivos , Diagnóstico Pré-Implantação
5.
Cancer Lett ; 568: 216259, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279851

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. Lenvatinib is the first-line therapy for HCC but has only limited clinical benefit. Here, we explored the role and mechanism of the WD repeat domain 4 (WDR4) in lenvatinib resistance to improve clinical benefit. We found that lenvatinib-resistant HCC tissues/cells exhibited increased the N7-methylguanosine (m7G) modification and WDR4 expression. By a gain/loss of function experiment, we showed that WDR4 promoted HCC lenvatinib resistance and tumor progress both in vitro and in vivo. By proteomics analysis and RNA immunoprecipitation PCR, we found that tripartite motif protein 28 (trim28) was an important WDR4 target gene. WDR4 promoted TRIM28 expression, further affected target genes expression, and thus increased cell-acquired stemness and lenvatinib resistance. Clinical tissue data showed that TRIM28 expression was correlated with WDR4 levels, and the expression of both was positively correlated with poor prognosis. Our study provides new insight into the role of WDR4, suggesting a potential therapeutic target to enhance the lenvatinib sensitivity of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Quinolinas/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP , Proteína 28 com Motivo Tripartido
6.
Biomed Pharmacother ; 165: 114699, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385210

RESUMO

A novel ligustrazine diselenide, 1,2-bis ((3,5,6-trimethylpyrazin-2-yl) methyl) diselenide (Se2), for potential treatment on adenocarcinoma of lung cancer was successfully synthesized and fully characterized by various analytical approaches. Cytotoxic, antiproliferative and apoptosis-triggering mechanism of Se2 compound have been investigated through human lung adenocarcinoma (LUAD) cell line A549. The study found that Se2 significantly inhibit the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that Se2 induced cell arrest and apoptosis in S and G2/M phase, and the apoptotic effect of Se2 were associated with the increase of caspase 3 and PARP-1 level approved by western blot assay. Further mechanism study results suggested that Se2 suppressed the migration,invasion and colony formation of A549 cells, significantly inhibited the PI3K/Akt/m-TOR signaling pathway. The study indicated that Se2 is a bioactive substance that can induce apoptosis of A549 cells in-vitro, and it is a potent candidate drug for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Gut Microbes ; 15(1): 2156255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36563106

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a rare malignancy with a high prevalence in China. This study aimed to characterize the ICC tissues' bacterial metagenomics signature and explore its antitumor potential for cancer. In this study, 16S rRNA sequencing was carried out on 99 tissues to characterize the features of intratumoral microbiota, followed by single-cell RNA sequencing (scRNA-seq) and multilevel validation. The presence of microbial DNA in tissues was determined using staining, fluorescence in situ hybridization (FISH), and transmission electron microscopy (TEM). A Gram-positive aerobic bacterium, identified as Staphylococcus capitis, was cultured from fresh tissues. Meanwhile, scRNA-seq showed that intratumoral bacteria could be present in multiple cell types. Using 16S rRNA sequencing, we identified a total of 2,320,287 high-quality reads corresponding to 4,594 OTU (operational taxonomic units) sequences. The most abundant bacterial orders include Burkholderiales, Pseudomonadales, Xanthomonadales, Bacillales and Clostridiales. Alpha and Beta diversity analysis revealed specific features in different tissues. In addition, the content of Paraburkholderia fungorum was significantly higher in the paracancerous tissues and negatively correlated with CA199 (Carbohydrate antigen199) levels. The results of in vitro and in vivo experiments suggest that P. fungorum possesses an antitumor activity against tumors. Metabolomics and transcriptomics showed that P. fungorum could inhibit tumor growth through alanine, aspartate and glutamate metabolism. We determined the characteristic profile of the intratumoral microbiota and the antitumor effect of P. fungorum in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Microbiota/genética , Bactérias/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
9.
Cell Host Microbe ; 30(11): 1518-1526.e4, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36240764

RESUMO

The newly emerged BA.2.75 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant contains 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here, we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in S. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2 but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The impact of these mutations is consistent with their locations in common neutralizing antibody epitopes. Further, BA.2.75 shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling reveals enhanced receptor contacts introduced by N460K, suggesting a mechanism of potentiated receptor utilization and syncytia formation.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Testes de Neutralização , Anticorpos Antivirais , Proteínas do Envelope Viral
10.
EMBO Rep ; 23(8): e53468, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35785414

RESUMO

Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Biomark Res ; 10(1): 25, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468812

RESUMO

BACKGROUND: Kinase suppressor of Ras 2 (KSR2) is a regulator of MAPK signaling that is overactivated in most hepatocellular carcinoma (HCC). We sought to determine the role of KSR2 in HCC pathogenesis. METHODS: We tested the level of KSR2 in HCC tissues and cell lines by tissue microarray, qPCR, and western blotting. Functionally, we determined the effects of KSR2 on the proliferation, migration, and invasion of HCC cells through colony formation assays, scratch assays, transwell migration assays, and xenograft tumor models. Co-immunoprecipitation (co-IP) experiments were used to assess the interaction of phospho-serine binding protein 14-3-3ζ and KSR2, and the effects of this interaction on growth and proliferation of human HCC cells were tested by co-overexpression and knockdown experiments. Additionally, we used flow cytometry to examine whether the KSR2 and 14-3-3ζ interaction conveys HCC resistance to sorafenib. RESULTS: KSR2 was significantly upregulated in HCC tissues and cell lines, and high KSR2 expression associated with poor prognosis in HCC patients. KSR2 knockdown significantly suppressed HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, co-IP experiments identified that 14-3-3ζ complexed with KSR2, and elevated 14-3-3ζ increased KSR2 protein levels in HCC cells. Importantly, Kaplan-Meier survival analysis showed that patients with both high KSR2 and high 14-3-3ζ expression levels had the shortest survival times and poorest prognoses. Interestingly, HCC cells overexpressing both KSR2 and 14-3-3ζ, rather than either protein alone, showed hyperactivated MAPK signaling and resistance to sorafenib. CONCLUSIONS: Our results provide new insights into the pro-tumorigenic role of KSR2 and its regulation of the MAPK pathway in HCC. The KSR2-14-3-3ζ interaction may be a therapeutic target to enhance the sorafenib sensitivity of HCC.

12.
Cell Death Dis ; 13(3): 205, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246510

RESUMO

Increased glycolysis is a hallmark of tumor, which can provide tumor cells with energy and building blocks to promote cell proliferation. Recent studies have shown that not only the expression of glycolytic genes but also their subcellular localization undergoes a variety of changes to promote development of different types of tumors. In this study, we performed a comprehensive analysis of glycolysis and gluconeogenesis genes based on data from TCGA to identify those with significant tumor-promoting potential across 14 types of tumors. This analysis not only confirms genes that are known to be involved in tumorigenesis, but also reveals a significant correlation of triosephosphate isomerase 1 (TPI1) with poor prognosis, especially in lung adenocarcinoma (LUAD). TPI1 is a glycolytic enzyme that interconverts dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP). We confirm the upregulation of TPI1 expression in clinical LUAD samples and an inverse correlation with the overall patient survival. Knocking down of TPI1 in lung cancer cells significantly reduced cell migration, colony formation, and xenograft tumor growth. Surprisingly, we found that the oncogenic function of TPI1 depends on its translocation to cell nucleus rather than its catalytic activity. Significant accumulation of TPI1 in cell nucleus was observed in LUAD tumor tissues compared with the cytoplasm localization in adjacent normal tissues. Moreover, nuclear translocation of TPI1 is induced by extracellular stress (such as chemotherapy agents and peroxide), which facilitates the chemoresistance of cancer cells. Our study uncovers a novel function of the glycolytic enzyme TPI1 in the LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Carcinogênese/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
13.
J Hepatol ; 77(1): 163-176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35219791

RESUMO

BACKGROUND & AIMS: Despite remarkable advances in treatment, most patients with hepatocellular carcinoma (HCC) respond poorly to anti-programmed cell death 1 (anti-PD1) therapy. A deeper insight into the tolerance mechanism of HCC against this therapy is urgently needed. METHODS: We performed next-generation sequencing, multiplex immunofluorescence, and dual-color immunohistochemistry and constructed an orthotopic HCC xenograft tumor model to identify the key gene associated with anti-PD1 tolerance. A spontaneously tumorigenic transgenic mouse model, an in vitro coculture system, mass cytometry, and multiplex immunofluorescence were used to explore the biological function of zinc finger protein 64 (ZFP64) on tumor progression and immune escape. Molecular and biochemical strategies like RNA-sequencing, chromatin immunoprecipitation-sequencing and mass spectrometry were used to gain insight into the underlying mechanisms of ZFP64. RESULTS: We showed that ZFP64 is frequently upregulated in tumor tissues from patients with anti-PD1-resistant HCC. Elevated ZFP64 drives anti-PD1 resistance by shifting macrophage polarization toward an alternative activation phenotype (M2) and fostering an inhibitory tumor microenvironment. Mechanistically, we primarily demonstrated that protein kinase C alpha (PKCα) directly phosphorylates ZFP64 at S226, leading to its nuclear translocation and the transcriptional activation of macrophage colony-stimulating factor (CSF1). HCC-derived CSF1 transforms macrophages to the M2 phenotype to drive immune escape and anti-PD1 tolerance. Notably, Gö6976, a protein kinase inhibitor, and lenvatinib, a multi-kinase inhibitor, reset the tumor microenvironment and restore sensitivity to anti-PD1 by blocking the PKCα/ZFP64/CSF1 axis. CONCLUSIONS: We propose that the PKCα/ZFP64/CSF1 axis is critical for triggering immune evasion and anti-PD1 tolerance. Inhibiting this axis with Gö6976 or lenvatinib overcomes anti-PD1 resistance in HCC. LAY SUMMARY: Despite remarkable treatment progress, most patients with hepatocellular carcinoma respond poorly to anti-PD1 therapy (a type of immunotherapy). A deeper insight into the tolerance mechanisms to this therapy is urgently needed. Herein, we unravel a previously unexplored mechanism linking tumor progression, macrophage polarization, and anti-PD1 resistance, and offer an attractive novel target for anti-PD1 combination therapy, which may benefit patients with hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Fatores Estimuladores de Colônias , Proteínas de Ligação a DNA , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Proteína Quinase C-alfa/genética , Inibidores de Proteínas Quinases , Fatores de Transcrição , Microambiente Tumoral
14.
Mol Cancer ; 21(1): 57, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189910

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) system provides adaptive immunity against plasmids and phages in prokaryotes. This system inspires the development of a powerful genome engineering tool, the CRISPR/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing system. Due to its high efficiency and precision, the CRISPR/Cas9 technique has been employed to explore the functions of cancer-related genes, establish tumor-bearing animal models and probe drug targets, vastly increasing our understanding of cancer genomics. Here, we review current status of CRISPR/Cas9 gene editing technology in oncological research. We first explain the basic principles of CRISPR/Cas9 gene editing and introduce several new CRISPR-based gene editing modes. We next detail the rapid progress of CRISPR screening in revealing tumorigenesis, metastasis, and drug resistance mechanisms. In addition, we introduce CRISPR/Cas9 system delivery vectors and finally demonstrate the potential of CRISPR/Cas9 engineering to enhance the effect of adoptive T cell therapy (ACT) and reduce adverse reactions.


Assuntos
Edição de Genes , Neoplasias , Animais , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genômica , Humanos , Neoplasias/genética , Neoplasias/terapia , Oncogenes
15.
J Hematol Oncol ; 14(1): 200, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838121

RESUMO

BACKGROUND: Immune checkpoint blockade resistance narrows the efficacy of cancer immunotherapies, but the underlying mechanism remains elusive. Delineating the inherent mechanisms of anti-PD1 resistance is important to improve outcome of patients with advanced HCC. METHOD: The level of cricTMEM181 was measured in HCC patients with anti-PD1 therapy by RNA sequencing and then confirmed by qPCR and Sanger sequencing. Immune status in tumor microenvironment of HCC patients or mice models was evaluated by flow cytometry and IHC. Exosomes from HCC cell lines were isolated by ultracentrifugation, and their internalization by macrophage was confirmed by immunofluorescence. The underlying mechanism of HCC-derived exosomal circTMEM181 to macrophage was confirmed by SILAC, RNA FISH and RNA immunoprecipitation. The ATP-ADO pathway amplified by HCC-macrophage interaction was evaluated through ATP, AMP and ADO measurement and macrophage-specific CD39 knockout mice. The role of circTMEM181 in anti-PD1 therapy and its clinical significance were also determined in our retrospective HCC cohorts. RESULTS: Here, we found that circTMEM181 was elevated in hepatocellular carcinoma (HCC) patients responding poorly to anti-PD1 therapy and in HCC patients with a poor prognosis after operation. Moreover, we also found that high exosomal circTMEM181 favored the immunosuppressive microenvironment and endowed anti-PD1 resistance in HCC. Mechanistically, exosomal circTMEM181 sponged miR-488-3p and upregulated CD39 expression in macrophages. Using macrophage-specific CD39 knockout mice and pharmacologic approaches, we revealed a novel mode of anti-PD1 resistance in HCC. We discovered that cell-specific CD39 expression in macrophages and CD73 expression in HCC cells synergistically activated the eATP-adenosine pathway and produced more adenosine, thereby impairing CD8+ T cell function and driving anti-PD1 resistance. CONCLUSION: In summary, HCC-derived exosomal circTMEM181 contributes to immunosuppression and anti-PD1 resistance by elevating CD39 expression, and inhibiting the ATP-adenosine pathway by targeting CD39 on macrophages can rescue anti-PD1 therapy resistance in HCC.


Assuntos
Adenosina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188638, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688805

RESUMO

After years of in-depth research on immune checkpoints, therapeutic reversal of immune-exhaustion with immune checkpoint inhibitors (ICPIs) has been shown to be effective in primary liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma. The clinical development of novel ICPIs continues at a rapid pace, with more than 200 clinical trials of immunotherapeutic agents registered as of July 2021 for the treatment of liver cancer. In this review, we discussed the immune tolerance mechanism of liver cancer and the biological basis of immune checkpoints, focusing on the current status of ICPIs' development and clinical application. In addition, ICPIs combined with local resection, radiofrequency ablation, chemoembolization, and other molecular targeted drug therapies have shown better efficacy. Combined therapy based on multidisciplinary cooperation is the future direction of treatment in liver cancer.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/patologia
17.
J Exp Clin Cancer Res ; 40(1): 290, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526098

RESUMO

BACKGROUND: Accumulating evidence indicates that circRNAs may serve as essential regulators in the progression of several human cancers, but the function and mechanism of circRNAs in intrahepatic cholangiocarcinoma (ICC) are largely unknown. METHODS: RNA-seq was used to assess differentially expressed circRNAs between 4 ICC and peritumor tissues. Quantitative RT-PCR and in situ hybridization were used to determine the circHMGCS1-016 expression in ICC tissues. The function and mechanism of circHMGCS1-016 were further identified via in vivo experiments. The clinical characteristics and prognostic significance of circHMGCS1-016 were analyzed by a retrospective study. The functions of circHMGCS1-016 were assessed via modifying circRNA expression in ICC cells. Moreover, the molecular mechanisms of circHMGCS1-016 in ICC cells were explored by circRNA precipitation, miRNA immunoprecipitation, SILAC and luciferase reporter assays. RESULTS: We identified that compared with peritumor tissues, ICC tissues expressed hsa_circ_0008621 (circHMGCS1-016) high by RNA-seq, which was further identified by qRT-PCR and in situ hybridization. Moreover, the expression of circHMGCS1-016 was revealed to be associated with survival and recurrence of ICC patients. By regulating circHMGCS1-016 expression, we found that elevated circHMGCS1-016 promoted ICC development both in vitro and in vivo. By SILAC and circRNA-pull down, we demonstrated that circHMGCS1-016 induced ICC cell invasion and reshaped the tumor immune microenvironment via the miR-1236-3p/CD73 and GAL-8 axis. In ICC tissues, we uncovered that a high level of circHMGCS1-016 was positively associated with CD73 and GAL-8 expression and negatively related to the CD8+ T cells infiltration, which was further validated by establishing a humanized mouse tumor model. Importantly, we displayed that ICC patients with high levels of circHMGCS1-016 in tumor tissues benefited less from anti-PD1 treatment compared to those with low levels of circHMGCS1-016. CONCLUSIONS: CircHMGCS1-016 is a forceful contributor in ICC development and immune tolerance via miR-1236-3p/CD73 and GAL-8 axis. CircHMGCS1-016 can be explored as a new potential biomarker and therapeutic target for PD1-resistant ICC.


Assuntos
5'-Nucleotidase/genética , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Galectinas/genética , Hidroximetilglutaril-CoA Sintase/genética , MicroRNAs/genética , RNA Circular , Microambiente Tumoral/genética , Animais , Neoplasias dos Ductos Biliares/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunomodulação/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Interferência de RNA , Microambiente Tumoral/imunologia
18.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842281

RESUMO

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Assuntos
Infecções por HIV/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Membrana Celular/metabolismo , Regulação para Baixo , Células HEK293 , Soropositividade para HIV , HIV-1/metabolismo , HIV-1/patogenicidade , Receptor Celular 1 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Vírion/metabolismo , Replicação Viral/efeitos dos fármacos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
19.
PLoS Pathog ; 12(1): e1005373, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26730950

RESUMO

Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Western Blotting , Células COS , Catepsinas/metabolismo , Chlorocebus aethiops , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Técnicas de Patch-Clamp
20.
Virology ; 488: 202-15, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655238

RESUMO

Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Here we provide evidence that cell-cell contact promotes infection mediated by the glycoprotein (GP) of EBOV. Interestingly, expression of EBOV GP alone, even in the absence of retroviral Gag-Pol, is sufficient to transfer a retroviral vector encoding Tet-off from cell to cell. Cell-to-cell infection mediated by EBOV GP is blocked by inhibitors of actin polymerization, but appears to be less sensitive to KZ52 neutralization. Treatment of co-cultured cells with cathepsin B/L inhibitors, or an entry inhibitor 3.47 that targets the receptor NPC1 for virus binding, also blocks cell-to-cell infection. Cell-cell contact also enhances spread of rVSV bearing GP in monocytes and macrophages, the primary targets of natural EBOV infection. Altogether, our study reveals that cell-cell contact promotes EBOV GP-mediated infection, and provides new insight into understanding EBOV spread and viral pathogenesis.


Assuntos
Ebolavirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Receptores Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA