Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 37(5): 1276-1289, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985391

RESUMO

The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.


Assuntos
Doenças Ósseas , Vesículas Extracelulares , Inflamassomos , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Inflamassomos/metabolismo , Inflamassomos/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Doenças Ósseas/terapia , Doenças Ósseas/etiologia , Artropatias/terapia , Piroptose , Interleucina-1beta/metabolismo
2.
Open Med (Wars) ; 19(1): 20240968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799254

RESUMO

Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.

3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 181-191, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597078

RESUMO

OBJECTIVES: To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS: Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS: The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS: Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.


Assuntos
Medicamentos de Ervas Chinesas , Panax , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Hipóxia
4.
Histol Histopathol ; 39(9): 1109-1131, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38353136

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.


Assuntos
Lesões Encefálicas Traumáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesões Encefálicas Traumáticas/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Diferenciação Celular , Exossomos/transplante , Exossomos/metabolismo
5.
Hum Cell ; 36(5): 1620-1637, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358734

RESUMO

Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.


Assuntos
Células-Tronco Mesenquimais , Dente , Animais , Humanos , Medicina Regenerativa , Ligamento Periodontal , Engenharia Tecidual , Polpa Dentária
6.
Front Oncol ; 12: 1051148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465358

RESUMO

Background: Endothelial-mesenchymal transition (EndMT) is an important process of angiogenesis, which plays a significant role in in tumor invasion and metastasis, while its regulatory mechanisms in breast cancer remain to be fully elucidated. We previously demonstrated that tumor-associated macrophages (TAMs) can induce EndMT in endothelial cells by secreting CCL18 through the activation of the TGF-ß and Notch signaling pathways in breast cancer. This study was designed to study the role of EndMT in breast cancer angiogenesis and progression in order to explore the underlying mechanism. Methods: Immunohistochemistry (IHC) was used to evaluate the expression of microvascular density (MVD) and EndMT markers in breast cancer. TGF-ß1 was used to induce EndMT models of differentiated-endothelial breast cancer stem-like cells (BCSLCs). In vitro cell migration, proliferation and matrigel tube-formation assays, as well as in vivo nude mouse tumor-bearing model and nude mouse dorsal skinfold window chamber (DSWC) model, were utilized to investigate the effects in order to explore the mechanism of EndMT induced by TGF-ß1 on breast cancer progression. Results: In this study, we demonstrated that the EndMT markers were positively associated with MVD indicating unfavorable prognosis of invasive ductal carcinoma (IDC) patients. Functionally, TGF-ß1 promoted migration, proliferation and angiogenesis of differentiated-endothelial BCSLCs by inducing EndMT in vitro and promoted tumor growth and angiogenesis in vivo. Mechanically, we revealed TGF-ß1 induced EndMT by activation of TGF-ß and Notch signaling pathways with increase of p-Smad2/3 and Notch1 expression. Moreover, we found Snail and Slug were key factors of TGF-ß and Notch signaling pathways. Conclusion: Our findings elucidated the mechanism of TGF-ß1 in the promotion of angiogenesis and progression by EndMT in breast cancer.

7.
Front Genet ; 13: 839589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432441

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignant gastrointestinal tumor threatening global human health. For patients diagnosed with ESCC, determining the prognosis is a huge challenge. Due to their important role in tumor progression, long non-coding RNAs (lncRNAs) may be putative molecular candidates in the survival prediction of ESCC patients. Here, we obtained three datasets of ESCC lncRNA expression profiles (GSE53624, GSE53622, and GSE53625) from the Gene Expression Omnibus (GEO) database. The method of statistics and machine learning including survival analysis and LASSO regression analysis were applied. We identified a six-lncRNA signature composed of AL445524.1, AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2. Kaplan-Meier and Cox analyses were conducted, and the prognostic ability and predictive independence of the lncRNA signature were found in three ESCC datasets. In the entire set, time-dependent ROC curve analysis showed that the prediction accuracy of the lncRNA signature was remarkably greater than that of TNM stage. ROC and stratified analysis indicated that the combination of six-lncRNA signature with the TNM stage has the highest accuracy in subgrouping ESCC patients. Furthermore, experiments subsequently confirmed that one of the lncRNAs LINC01273 may play an oncogenic role in ESCC. This study suggested the six-lncRNA signature could be a valuable survival predictor for patients with ESCC and have potential to be an auxiliary biomarker of TNM stage to subdivide ESCC patients more accurately, which has important clinical significance.

9.
Prog Biophys Mol Biol ; 128: 85-99, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27697476

RESUMO

Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design.


Assuntos
Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Humanos , Biossíntese de Proteínas , Domínios Proteicos , Estabilidade Proteica
10.
Protein Sci ; 24(9): 1475-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26131561

RESUMO

Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix's stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Fragmentos de Peptídeos/química , Dobramento de Proteína , Modificação Traducional de Proteínas , Estrutura Secundária de Proteína
11.
PLoS Genet ; 9(6): e1003515, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754950

RESUMO

Down syndrome (DS), commonly caused by an extra copy of chromosome 21 (chr21), occurs in approximately one out of 700 live births. Precisely how an extra chr21 causes over 80 clinically defined phenotypes is not yet clear. Reduced representation bisulfite sequencing (RRBS) analysis at single base resolution revealed DNA hypermethylation in all autosomes in DS samples. We hypothesize that such global hypermethylation may be mediated by down-regulation of TET family genes involved in DNA demethylation, and down-regulation of REST/NRSF involved in transcriptional and epigenetic regulation. Genes located on chr21 were up-regulated by an average of 53% in DS compared to normal villi, while genes with promoter hypermethylation were modestly down-regulated. DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes. Our data suggest that global epigenetic changes may occur early in development and contribute to DS phenotypes.


Assuntos
Metilação de DNA/genética , Síndrome de Down/genética , Epigênese Genética/genética , Placenta/metabolismo , Cromossomos Humanos Par 21/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Síndrome de Down/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Oxigenases de Função Mista , Placenta/citologia , Gravidez , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA