Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Med ; 30(9): 2450-2460, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117878

RESUMO

Circulating plasma proteins play key roles in human health and can potentially be used to measure biological age, allowing risk prediction for age-related diseases, multimorbidity and mortality. Here we developed a proteomic age clock in the UK Biobank (n = 45,441) using a proteomic platform comprising 2,897 plasma proteins and explored its utility to predict major disease morbidity and mortality in diverse populations. We identified 204 proteins that accurately predict chronological age (Pearson r = 0.94) and found that proteomic aging was associated with the incidence of 18 major chronic diseases (including diseases of the heart, liver, kidney and lung, diabetes, neurodegeneration and cancer), as well as with multimorbidity and all-cause mortality risk. Proteomic aging was also associated with age-related measures of biological, physical and cognitive function, including telomere length, frailty index and reaction time. Proteins contributing most substantially to the proteomic age clock are involved in numerous biological functions, including extracellular matrix interactions, immune response and inflammation, hormone regulation and reproduction, neuronal structure and function and development and differentiation. In a validation study involving biobanks in China (n = 3,977) and Finland (n = 1,990), the proteomic age clock showed similar age prediction accuracy (Pearson r = 0.92 and r = 0.94, respectively) compared to its performance in the UK Biobank. Our results demonstrate that proteomic aging involves proteins spanning multiple functional categories and can be used to predict age-related functional status, multimorbidity and mortality risk across geographically and genetically diverse populations.


Assuntos
Envelhecimento , Proteômica , Humanos , Envelhecimento/genética , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Reino Unido/epidemiologia , Doença Crônica , Adulto , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
2.
Nat Genet ; 56(5): 767-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689000

RESUMO

We develop a method, SBayesRC, that integrates genome-wide association study (GWAS) summary statistics with functional genomic annotations to improve polygenic prediction of complex traits. Our method is scalable to whole-genome variant analysis and refines signals from functional annotations by allowing them to affect both causal variant probability and causal effect distribution. We analyze 50 complex traits and diseases using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and up to 34% in cross-ancestry prediction compared to the baseline method SBayesR, which does not use annotations, and outperforms other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and PRS-CSx. Investigation of factors affecting prediction accuracy identifies a significant interaction between SNP density and annotation information, suggesting whole-genome sequence variants with annotations may further improve prediction. Functional partitioning analysis highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from nonsynonymous SNPs.


Assuntos
Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Anotação de Sequência Molecular/métodos , Genômica/métodos , Genoma Humano , Modelos Genéticos
3.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
4.
Science ; 380(6643): eabn2937, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104612

RESUMO

Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.


Assuntos
Doença , Variação Genética , Animais , Humanos , Evolução Biológica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Doença/genética
5.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945512

RESUMO

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.

6.
Cancer Immunol Res ; 10(8): 932-946, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35749374

RESUMO

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities. Here, we report a library of 39 T-cell receptors (TCR) targeting TP53 mutations shared among 7.3% of patients with solid tumors. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner in vitro and in vivo. Twelve patients with chemorefractory epithelial cancers were treated with ex vivo-expanded autologous tumor-infiltrating lymphocytes (TIL) that were naturally reactive against TP53 mutations. However, limited clinical responses (2 partial responses among 12 patients) were seen. These infusions contained low frequencies of mutant p53-reactive TILs that had exhausted phenotypes and showed poor persistence. We also treated one patient who had chemorefractory breast cancer with ACT comprising autologous peripheral blood lymphocytes transduced with an allogeneic HLA-A*02-restricted TCR specific for p53R175H. The infused cells exhibited an improved immunophenotype and prolonged persistence compared with TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these proof-of-concept data suggest that the library of TCRs targeting shared p53 neoantigens should be further evaluated for the treatment of patients with advanced human cancers. See related Spotlight by Klebanoff, p. 919.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Genes Codificadores dos Receptores de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
7.
Science ; 375(6583): 877-884, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35113651

RESUMO

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos do Interstício Tumoral/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Transcriptoma , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA-Seq , Análise de Célula Única
8.
Exp Ther Med ; 22(3): 1014, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34373700

RESUMO

The therapeutic effects of melatonin on cholestatic liver injury have received widespread attention recently. The aim of the present study was to investigate the mechanisms of the anti-cholestatic effects of melatonin against α-naphthyl isothiocyanate (ANIT)-induced liver injury in rats and to screen for potential biomarkers of cholestasis through isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Rats orally received melatonin (100 mg/kg body weight) or an equivalent volume of 0.25% carboxymethyl cellulose sodium salt 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were subsequently sacrificed at 36 h after injection. Liver biochemical indices were determined and liver tissue samples were stained using hematoxylin-eosin staining, followed by iTRAQ quantitative proteomics to identify potential underlying therapeutic mechanisms and biomarkers. The results suggested that the expression levels of alanine transaminase, aspartate aminotransferase, total bilirubin and direct bilirubin were reduced in the rats treated with melatonin. Histopathological observation indicated that melatonin was effective in the treatment of ANIT-induced cholestasis. iTRAQ proteomics results suggested that melatonin-mediated reduction in ANIT-induced cholestasis may be associated with enhanced antioxidant function and relieving abnormal fatty acid metabolism. According to pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes, the major metabolic pathways for the metabolism of melatonin are fatty acid degradation, the peroxisome proliferator-activated receptor signaling pathway, fatty acid metabolism, chemical carcinogenesis, carbon metabolism, pyruvate metabolism, fatty acid biosynthesis and retinol metabolism, as well as drug metabolism via cytochrome P450. Malate dehydrogenase 1 and glutathione S-transferase Yb-3 may serve as potential targets in the treatment of ANIT-induced cholestasis with melatonin.

9.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321276

RESUMO

BACKGROUND: Recognition of neoantigens by T cells plays a major role in cancer immunotherapy. Identification of neoantigen-specific T-cell receptors (TCRs) has become a critical research tool for studying T cell-mediated responses after immunotherapy. In addition, neoantigen-specific TCRs can be used to modify the specificity of T cells for T cell-based therapies targeting tumor-specific mutations. Although several techniques have been developed to identify TCR sequences, these techniques still require a significant amount of labor, making them impractical in the clinical setting. METHODS: Thanks to the availability of high-throughput single-cell sequencing, we developed a new process to isolate neoantigen-specific TCR sequences. This process included the isolation of tumor-infiltrating T cells from a tumor specimen and the stimulation of T cells by neoantigen-loaded dendritic cells, followed by single-cell sequencing for TCR and T-cell activation markers, interferon-γ and interleukin-2. RESULTS: In this study, potential neoantigen-specific TCRs were isolated from three melanoma and three colorectal tumor specimens. These TCRs were then synthesized and transduced into autologous T cells, followed by testing the recognition of neoantigens. A total of 28 neoantigen-specific TCRs were identified by this process. If identical TCR sequences were detected from two or more single cells, this approach was highly reliable (100%, 19 out of 19 TCRs). CONCLUSION: This single-cell approach provides an efficient process to isolate antigen-specific TCRs for research and clinical applications.


Assuntos
Antígenos de Neoplasias/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Humanos
10.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34266885

RESUMO

The adoptive transfer of naturally occurring T cells that recognize cancer neoantigens has led to durable tumor regressions in select patients with cancer. However, it remains unknown whether such T cells can be isolated from and used to treat patients with glioblastoma, a cancer that is refractory to currently available therapies. To answer this question, we stimulated patient blood-derived memory T cells in vitro using peptides and minigenes that represented point mutations unique to patients' tumors (ie, candidate neoantigens) and then tested their ability to specifically recognize these mutations. In a cohort of five patients with glioblastoma, we found that circulating CD4+ memory T cells from one patient recognized a cancer neoantigen harboring a mutation in the EED gene (EEDH189N) that was unique to that patient's tumor. This finding suggests that neoantigen-reactive T cells could indeed be isolated from patients with glioblastoma, thereby providing a rationale for further efforts to develop neoantigen-directed adoptive T cell therapy for this disease.


Assuntos
Glioblastoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Humanos
11.
Cancer Res ; 81(5): 1230-1239, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33419773

RESUMO

Tumor mutational burden (TMB) is an emerging biomarker of response to immunotherapy in solid tumors. However, the extent to which variation in TMB between patients is attributable to germline genetic variation remains elusive. Here, using 7,004 unrelated patients of European descent across 33 cancer types from The Cancer Genome Atlas, we show that pan-cancer TMB is polygenic with approximately 13% of its variation explained by approximately 1.1 million common variants altogether. We identify germline variants that affect TMB in stomach adenocarcinoma through altering the expression levels of BAG5 and KLC1. Further analyses provide evidence that TMB is genetically associated with complex traits and diseases, such as smoking, rheumatoid arthritis, height, and cancers, and some of the associations are likely causal. Overall, these results provide new insights into the genetic basis of somatic mutations in tumors and may inform future efforts to use genetic variants to stratify patients for immunotherapy. SIGNIFICANCE: This study provides evidence for a polygenic architecture of tumor mutational burden and opens an avenue for the use of whole-genome germline genetic variations to stratify patients with cancer for immunotherapy.


Assuntos
Estatura/genética , Herança Multifatorial/genética , Mutação , Neoplasias/genética , Fumar Tabaco/genética , Artrite Reumatoide/genética , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Cinesinas , Masculino , Polimorfismo de Nucleotídeo Único , População Branca/genética
12.
Nat Commun ; 11(1): 2061, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345984

RESUMO

Promoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional regulation. Current high-throughput technologies for detecting PAIs, such as promoter capture Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict PAIs. Using mQTL data from human peripheral blood ([Formula: see text]), we predict 34,797 PAIs which show strong overlap with the chromatin contacts identified by previous experimental assays. The promoter-interacting DNAm sites are enriched in enhancers or near expression QTLs. Genes whose promoters are involved in PAIs are more actively expressed, and gene pairs with promoter-promoter interactions are enriched for co-expression. Integration of the predicted PAIs with GWAS data highlight interactions among 601 DNAm sites associated with 15 complex traits. This study demonstrates the use of mQTL data to predict PAIs and provides insights into the role of PAIs in complex trait variation.


Assuntos
Cromatina/genética , Análise de Dados , Epigenômica , Regiões Promotoras Genéticas , Doença de Crohn/genética , Metilação de DNA/genética , Replicação do DNA/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
13.
Cancer Immunol Res ; 7(11): 1824-1836, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31484655

RESUMO

Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) can mediate responses in some patients with metastatic epithelial cancer. Identifying gene signatures associated with successful ACT might enable the development of improved therapeutic approaches. The persistence of transferred T cells in the peripheral blood is one indication of clinical effectiveness, but many T-cell and host factors may influence T-cell persistence. To limit these variables, we previously studied a patient with metastatic colorectal cancer treated with polyclonal TILs targeting the KRAS(G12D) hotspot mutation, who experienced a partial response for 9 months. Three dominant clonotypes specifically recognizing KRAS(G12D) epitopes were identified, but we found that only two clonotypes persisted 40 days after ACT. Because of these findings, in this study, we performed the single-cell transcriptome analysis of the infused TILs. The analysis revealed a total of 472 genes that were differentially expressed between clonotypes 9.1-NP and 9.2-P single cells, and 528 genes between 9.1-NP and 10-P. Following these clonotypes in the peripheral blood after ACT, the gene expression patterns changed, but IL7R, ITGB1, KLF2, and ZNF683 remained expressed in the persistent 9.2-P and 10-P cells, compared with the nonpersistent 9.1-NP cells. In addition, four autologous TILs, which were used for treatment but persisted poorly 1 month after ACT, did not express the gene profiles associated with persistence. These results suggest that certain TIL populations possess a unique gene expression profile that can lead to the persistence of T cells. Thus, this single-patient study provides insight into how to improve ACT for solid cancer.


Assuntos
Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/imunologia , Biomarcadores/metabolismo , Células Clonais/imunologia , Células Clonais/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/transplante , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Immunol ; 202(12): 3458-3467, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036766

RESUMO

Immune checkpoint inhibitors are effective in treating a variety of malignancies, including metastatic bladder cancer. A generally accepted hypothesis suggests that immune checkpoint inhibitors induce tumor regressions by reactivating a population of endogenous tumor-infiltrating lymphocytes (TILs) that recognize cancer neoantigens. Although previous studies have identified neoantigen-reactive TILs from several types of cancer, no study to date has shown whether neoantigen-reactive TILs can be found in bladder tumors. To address this, we generated TIL cultures from patients with primary bladder cancer and tested their ability to recognize tumor-specific mutations. We found that CD4+ TILs from one patient recognized mutated C-terminal binding protein 1 in an MHC class II-restricted manner. This finding suggests that neoantigen-reactive TILs reside in bladder cancer, which may help explain the effectiveness of immune checkpoint blockade in this disease and also provides a rationale for the future use of adoptive T cell therapy targeting neoantigens in bladder cancer.


Assuntos
Oxirredutases do Álcool/metabolismo , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Proteínas de Ligação a DNA/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Bexiga Urinária/imunologia , Adulto , Idoso , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Células Cultivadas , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Mutação/genética
15.
J Immunother ; 42(4): 126-135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30882547

RESUMO

A deletion variant of epidermal growth factor receptor (EGFRvIII) is a known driver mutation in a subset of primary and secondary glioblastoma multiforme. Adoptive transfer of genetically modified chimeric antigen receptor (CAR) lymphocytes has demonstrated efficacy in hematologic malignancies but is still early in development for solid cancers. The surface expression of the truncated extracellular ligand domain created by EGFRvIII makes it an attractive target for a CAR-based cancer treatment. Patients with recurrent glioblastoma expressing EGFRvIII were enrolled in a dose escalation phase I trial, using a third-generation CAR construct derived from a human antibody. Transduced cells were administered after lymphodepleting chemotherapy and supported posttransfer with intravenous interleukin-2. The dose escalation proceeded at half-log increments from 10 to >10 cells. Primary endpoints were safety and progression-free survival. Eighteen patients were treated with final infusion products ranging from 6.3×10 to 2.6×10 anti-EGFRvIII CAR T cells. Median progression-free survival was 1.3 months (interquartile range: 1.1-1.9), with a single outlier of 12.5 months. Two patients experienced severe hypoxia, including one treatment-related mortality after cell administration at the highest dose level. All patients developed expected transient hematologic toxicities from preparative chemotherapy. Median overall survival was 6.9 months (interquartile range: 2.8-10). Two patients survived over 1 year, and a third patient was alive at 59 months. Persistence of CAR cells correlated with cell dose, but there were no objective responses. Administration of anti-EGFRvIII CAR-transduced T cells did not demonstrate clinically meaningful effect in patients with glioblastoma multiforme in this phase I pilot trial.


Assuntos
Receptores ErbB/antagonistas & inibidores , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Condicionamento Pré-Transplante/métodos , Resultado do Tratamento
16.
Nat Med ; 24(6): 724-730, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29867227

RESUMO

Immunotherapy using either checkpoint blockade or the adoptive transfer of antitumor lymphocytes has shown effectiveness in treating cancers with high levels of somatic mutations-such as melanoma, smoking-induced lung cancers and bladder cancer-with little effect in other common epithelial cancers that have lower mutation rates, such as those arising in the gastrointestinal tract, breast and ovary1-7. Adoptive transfer of autologous lymphocytes that specifically target proteins encoded by somatically mutated genes has mediated substantial objective clinical regressions in patients with metastatic bile duct, colon and cervical cancers8-11. We present a patient with chemorefractory hormone receptor (HR)-positive metastatic breast cancer who was treated with tumor-infiltrating lymphocytes (TILs) reactive against mutant versions of four proteins-SLC3A2, KIAA0368, CADPS2 and CTSB. Adoptive transfer of these mutant-protein-specific TILs in conjunction with interleukin (IL)-2 and checkpoint blockade mediated the complete durable regression of metastatic breast cancer, which is now ongoing for >22 months, and it represents a new immunotherapy approach for the treatment of these patients.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Mutação/genética , Transferência Adotiva , Feminino , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Pessoa de Meia-Idade , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma/genética , Indução de Remissão
17.
Mol Ther ; 26(2): 379-389, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29174843

RESUMO

The adoptive transfer of neoantigen-reactive tumor-infiltrating lymphocytes (TILs) can result in tumor regression in patients with metastatic cancer. To improve the efficacy of adoptive T cell therapy targeting these tumor-specific mutations, we have proposed a new therapeutic strategy, which involves the genetic modification of autologous T cells with neoantigen-specific T cell receptors (TCRs) and the transfer of these modified T cells back to cancer patients. However, the current techniques to isolate neoantigen-specific TCRs are labor intensive, time consuming, and technically challenging, not suitable for clinical applications. To facilitate this process, a new approach was developed, which included the co-culture of TILs with tandem minigene (TMG)-transfected or peptide-pulsed autologous antigen-presenting cells (APCs) and the single-cell RNA sequencing (RNA-seq) analysis of T cells to identify paired TCR sequences associated with cells expressing high levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2). Following this new approach, multiple TCRs were identified, synthesized, cloned into a retroviral vector, and then transduced into donor T cells. These transduced T cells were shown to specifically recognize the neoantigens presented by autologous APCs. In conclusion, this approach provides an efficient procedure to isolate neoantigen-specific TCRs for clinical applications, as well as for basic and translational research.


Assuntos
Antígenos de Neoplasias/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
18.
J Clin Oncol ; 35(29): 3322-3329, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809608

RESUMO

Purpose Adoptive transfer of genetically modified T cells is being explored as a treatment for patients with metastatic cancer. Most current strategies use genes that encode major histocompatibility complex (MHC) class I-restricted T-cell receptors (TCRs) or chimeric antigen receptors to genetically modify CD8+ T cells or bulk T cells for treatment. Here, we evaluated the safety and efficacy of an adoptive CD4+ T-cell therapy using an MHC class II-restricted, HLA-DPB1*0401-restricted TCR that recognized the cancer germline antigen, MAGE-A3 (melanoma-associated antigen-A3). Patients and Methods Patients received a lymphodepleting preparative regimen, followed by adoptive transfer of purified CD4+ T cells, retrovirally transduced with MAGE-A3 TCR plus systemic high-dose IL-2. A cell dose escalation was conducted, starting at 107 total cells and escalating at half-log increments to approximately 1011 cells. Nine patients were treated at the highest dose level (0.78 to 1.23 × 1011 cells). Results Seventeen patients were treated. During the cell dose-escalation phase, an objective complete response was observed in a patient with metastatic cervical cancer who received 2.7 × 109 cells (ongoing at ≥ 29 months). Among nine patients who were treated at the highest dose level, objective partial responses were observed in a patient with esophageal cancer (duration, 4 months), a patient with urothelial cancer (ongoing at ≥ 19 months), and a patient with osteosarcoma (duration, 4 months). Most patients experienced transient fevers and the expected hematologic toxicities from lymphodepletion pretreatment. Two patients experienced transient grade 3 and 4 transaminase elevations. There were no treatment-related deaths. Conclusion These results demonstrate the safety and efficacy of administering autologous CD4+ T cells that are genetically engineered to express an MHC class II-restricted antitumor TCR that targets MAGE-A3. This clinical trial extends the reach of TCR gene therapy for patients with metastatic cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/transplante , Terapia Genética/métodos , Cadeias beta de HLA-DP/imunologia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Administração Intravenosa , Idoso , Antineoplásicos/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Feminino , Terapia Genética/efeitos adversos , Humanos , Imunoterapia Adotiva/efeitos adversos , Interleucina-2/administração & dosagem , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/genética , Fatores de Tempo , Transplante Autólogo , Resultado do Tratamento
19.
Clin Cancer Res ; 23(15): 4347-4353, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28377481

RESUMO

Purpose: The administration of autologous tumor-infiltrating lymphocytes (TILs) can mediate durable tumor regressions in patients with melanoma likely based on the recognition of immunogenic somatic mutations expressed by the cancer. There are limited data regarding the immunogenicity of mutations in breast cancer. We sought to identify immunogenic nonsynonymous mutations in a patient with triple-negative breast cancer (TNBC) to identify and isolate mutation-reactive TILs for possible use in adoptive cell transfer.Experimental Design: A TNBC metastasis was resected for TIL generation and whole-exome sequencing. Tandem minigenes or long 25-mer peptides encoding selected mutations were electroporated or pulsed onto autologous antigen-presenting cells, and reactivity of TIL was screened by upregulation of CD137 and IFNγ ELISPOT. The nature of the T-cell response against a unique nonsynonymous mutation was characterized.Results: We identified 72 nonsynonymous mutations from the tumor of a patient with TNBC. CD4+ and HLA-DRB1*1501-restricted TILs isolated from this tumor recognized a single mutation in RBPJ (recombination signal binding protein for immunoglobulin kappa J region). Analysis of 16 metastatic sites revealed that the mutation was ubiquitously present in all samples.Conclusions: Breast cancers can express naturally processed and presented unique nonsynonymous mutations that are recognized by a patient's immune system. TILs recognizing these immunogenic mutations can be isolated from a patient's tumor, suggesting that adoptive cell transfer of mutation-reactive TILs could be a viable treatment option for patients with breast cancer. Clin Cancer Res; 23(15); 4347-53. ©2017 AACR.


Assuntos
Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Feminino , Cadeias HLA-DRB1/imunologia , Humanos , Linfócitos do Interstício Tumoral/transplante , Pessoa de Meia-Idade , Mutação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Sequenciamento do Exoma
20.
N Engl J Med ; 375(23): 2255-2262, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27959684

RESUMO

We identified a polyclonal CD8+ T-cell response against mutant KRAS G12D in tumor-infiltrating lymphocytes obtained from a patient with metastatic colorectal cancer. We observed objective regression of all seven lung metastases after the infusion of approximately 1.11×1011 HLA-C*08:02-restricted tumor-infiltrating lymphocytes that were composed of four different T-cell clonotypes that specifically targeted KRAS G12D. However, one of these lesions had progressed on evaluation 9 months after therapy. The lesion was resected and found to have lost the chromosome 6 haplotype encoding the HLA-C*08:02 class I major histocompatibility complex (MHC) molecule. The loss of expression of this molecule provided a direct mechanism of tumor immune evasion. Thus, the infusion of CD8+ cells targeting mutant KRAS mediated effective antitumor immunotherapy against a cancer that expressed mutant KRAS G12D and HLA-C*08:02.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Feminino , Citometria de Fluxo , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/imunologia , Contagem de Linfócitos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA