Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673759

RESUMO

This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from Thermococcus sibiricus (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme. PEG contributes to the stabilization of the dimeric form of TsA, as shown by HPLC. Furthermore, neither polyamines nor PEG significantly affected the binding of the L-Asn substrate to TsA. The conjugates showed greater maximum activity at pH 7.5 and 85 °C, 10-50% more than for native TsA. The pH optima for both TsA-PEI and TsA-Spm conjugates were shifted to lower pH ranges from pH 10 (for the native enzyme) to pH 8.0. Additionally, the TsA-Spm conjugate exhibited the highest activity at pH 6.5-9.0 among all the samples. Furthermore, the temperature optimum for activity at pH 7.5 shifted from 90-95 °C to 80-85 °C for the conjugates. The thermal inactivation mechanism of TsA-PEG appeared to change, and no aggregation was observed in contrast to that of the native enzyme. This was visually confirmed and supported by the analysis of the CD spectra, which remained almost unchanged after heating the conjugate solution. These results suggest that TsA-PEG may be a more stable form of TsA, making it a potentially more suitable option for industrial use.


Assuntos
Asparaginase , Biocatálise , Estabilidade Enzimática , Thermococcus , Asparaginase/química , Asparaginase/metabolismo , Thermococcus/enzimologia , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Temperatura , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo
2.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298582

RESUMO

L-asparaginases (L-ASNases) of microbial origin are the mainstay of blood cancer treatment. Numerous attempts have been performed for genetic improvement of the main properties of these enzymes. The substrate-binding Ser residue is highly conserved in L-ASNases regardless of their origin or type. However, the residues adjacent to the substrate-binding Ser differ between mesophilic and thermophilic L-ASNases. Based on our suggestion that the triad, including substrate-binding Ser, either GSQ for meso-ASNase or DST for thermo-ASNase, is tuned for efficient substrate binding, we constructed a double mutant of thermophilic L-ASNase from Thermococcus sibiricus (TsA) with a mesophilic-like GSQ combination. In this study, the conjoint substitution of two residues adjacent to the substrate-binding Ser55 resulted in a significant increase in the activity of the double mutant, reaching 240% of the wild-type enzyme activity at the optimum temperature of 90 °C. The mesophilic-like GSQ combination in the rigid structure of the thermophilic L-ASNase appears to be more efficient in balancing substrate binding and conformational flexibility of the enzyme. Along with increased activity, the TsA D54G/T56Q double mutant exhibited enhanced cytotoxic activity against cancer cell lines with IC90 values from 2.8- to 7.4-fold lower than that of the wild-type enzyme.


Assuntos
Asparaginase , Proteínas de Bactérias , Thermococcus , Thermococcus/enzimologia , Asparaginase/química , Asparaginase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Mutação , Estabilidade Enzimática/genética , Sítios de Ligação , Conformação Proteica , Especificidade por Substrato/genética
3.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948436

RESUMO

L-asparaginase (L-ASNase) is a biotechnologically relevant enzyme for the pharmaceutical, biosensor and food industries. Efforts to discover new promising L-ASNases for different fields of biotechnology have turned this group of enzymes into a growing family with amazing diversity. Here, we report that thermophile Melioribacter roseus from Ignavibacteriae of the Bacteroidetes/Chlorobi group possesses two L-ASNases-bacterial type II (MrAII) and plant-type (MrAIII). The current study is focused on a novel L-ASNase MrAII that was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 70 °C and pH 9.3, with a high L-asparaginase activity of 1530 U/mg and L-glutaminase activity ~19% of the activity compared with L-asparagine. The kinetic parameters KM and Vmax for the enzyme were 1.4 mM and 5573 µM/min, respectively. The change in MrAII activity was not significant in the presence of 10 mM Ni2+, Mg2+ or EDTA, but increased with the addition of Cu2+ and Ca2+ by 56% and 77%, respectively, and was completely inhibited by Zn2+, Fe3+ or urea solutions 2-8 M. MrAII displays differential cytotoxic activity: cancer cell lines K562, Jurkat, LnCap, and SCOV-3 were more sensitive to MrAII treatment, compared with normal cells. MrAII represents the first described enzyme of a large group of uncharacterized counterparts from the Chlorobi-Ignavibacteriae-Bacteroidetes clade.


Assuntos
Asparaginase/metabolismo , Bactérias/enzimologia , Sequência de Aminoácidos , Asparaginase/química , Asparaginase/genética , Asparaginase/isolamento & purificação , Asparagina/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Evolução Molecular , Glutaminase/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Alinhamento de Sequência
4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576056

RESUMO

L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.


Assuntos
Archaea/enzimologia , Asparaginase/isolamento & purificação , Biotecnologia/tendências , Thermococcus/enzimologia , Sequência de Aminoácidos/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/efeitos dos fármacos , Cinética , Especificidade por Substrato/genética
5.
PLoS One ; 15(8): e0238452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866191

RESUMO

The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50-100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.


Assuntos
Acremonium/metabolismo , Membrana Celular/metabolismo , Cefalosporinas/biossíntese , Cefalosporinas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Adenosina Trifosfatases/metabolismo , Meios de Cultura/metabolismo , Fermentação/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , beta-Lactamas/metabolismo
6.
Biomolecules ; 10(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155745

RESUMO

The biogenic polyamines, spermine, spermidine (Spd) and putrescine (Put) are present at micro-millimolar concentrations in eukaryotic and prokaryotic cells (many prokaryotes have no spermine), participating in the regulation of cellular proliferation and differentiation. In mammalian cells Put is formed exclusively from L-ornithine by ornithine decarboxylase (ODC) and many potent ODC inhibitors are known. In bacteria, plants, and fungi Put is synthesized also from agmatine, which is formed from L-arginine by arginine decarboxylase (ADC). Here we demonstrate that the isosteric hydroxylamine analogue of agmatine (AO-Agm) is a new and very potent (IC50 3•10-8 M) inhibitor of E. coli ADC. It was almost two orders of magnitude less potent towards E. coli ODC. AO-Agm decreased polyamine pools and inhibited the growth of DU145 prostate cancer cells only at high concentration (1 mM). Growth inhibitory analysis of the Acremonium chrysogenum demonstrated that the wild type (WT) strain synthesized Put only from L-ornithine, while the cephalosporin C high-yielding strain, in which the polyamine pool is increased, could use both ODC and ADC to produce Put. Thus, AO-Agm is an important addition to the set of existing inhibitors of the enzymes of polyamine biosynthesis, and an important instrument for investigating polyamine biochemistry.


Assuntos
Acremonium/química , Agmatina , Carboxiliases , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Agmatina/análogos & derivados , Agmatina/química , Animais , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA