Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768589

RESUMO

The role of metallic nano- and microparticles in the development of inflammation has not yet been investigated. Soft tissue biopsy specimens of the bone bed taken during surgical revisions, as well as supernatants obtained from the surface of the orthopedic structures and dental implants (control), were examined. Investigations were performed using X-ray microtomography, X-ray fluorescence analysis, and scanning electron microscopy. Histological studies of the bone bed tissues were performed. Nanoscale and microscale metallic particles were identified as participants in the inflammatory process in tissues. Supernatants containing nanoscale particles were obtained from the surfaces of 20 units of new dental implants. Early and late apoptosis and necrosis of immunocompetent cells after co-culture and induction by lipopolysaccharide and human venous blood serum were studied in an experiment with staging on the THP-1 (human monocytic) cell line using visualizing cytometry. As a result, it was found that nano- and microparticles emitted from the surface of the oxide layer of medical devices impregnated soft tissue biopsy specimens. By using different methods to analyze the cell-molecule interactions of nano- and microparticles both from a clinical perspective and an experimental research perspective, the possibility of forming a chronic immunopathological endogenous inflammatory process with an autoimmune component in the tissues was revealed.


Assuntos
Implantes Dentários , Humanos , Microscopia Eletrônica de Varredura , Monócitos , Linhagem Celular , Titânio/análise , Propriedades de Superfície
2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555457

RESUMO

The purpose of this study was to provide an immuno-mediated substantiation of the etiopathogenesis of mucositis and peri-implantitis based on the results of experimental, laboratory and clinical studies. The biopsy material was studied to identify impregnated nanoscale and microscale particles in the structure of pathological tissues by using X-ray microtomography and X-ray fluorescence analyses. Electron microscopy with energy-dispersive analysis identified the composition of supernatants containing nanoscale metal particles obtained from the surfaces of dental implants. The parameters of the nanoscale particles were determined by dynamic light scattering. Flow cytometry was used to study the effect of nanoscale particles on the ability to induce the activation and apoptosis of immunocompetent cells depending on the particles' concentrations during cultivation with the monocytic cell line THP-1 with the addition of inductors. An analysis of the laboratory results suggested the presence of dose-dependent activation, as well as early and late apoptosis of the immunocompetent cells. Activation and early and late apoptosis of a monocytic cell line when THP-1 was co-cultured with nanoscale metal particles in supernatants were shown for the first time. When human venous blood plasma was added, both activation and early and late apoptosis had a dose-dependent effect and differed from those of the control groups.


Assuntos
Implantes Dentários , Mucosite , Peri-Implantite , Humanos , Peri-Implantite/metabolismo , Inflamação
3.
Dent Mater ; 38(6): 924-934, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289284

RESUMO

OBJECTIVES: To study the oxide layer stability of certified dental implants of system "P", made based on TiO2 alloy with carbon coating. To perform a comparative statistical analysis of the obtained data with the available data for the dental implants of systems "A" and "B". METHODS: X-ray microtomography and X-ray fluorescence analysis were used to study soft tissue biopsy specimens. Supernatants were studied by dynamic light scattering and transmission electron microscopy when simulating free emission of nanoscale metal oxide particles from the surface of dental implants as well as when simulating physical loading. A comparative analysis of three parameters of nanoscale particles was performed by statistical data analysis. The surface of the "P" system dental implant with surface treatment was analyzed by scanning electron microscopy. RESULTS: Both free emission of nanoscale oxide layer particles and yield of nano- and microscale particles during simulation of physical load were confirmed. Statistically significant differences were noted in a comparative analysis of the size and frequency of occurrence of these particles in the supernatants obtained from the surfaces of three dental implant systems. The elemental composition of the particles and the composition and structure of the "P" system dental implants themselves were analyzed. SIGNIFICANCE: The developed method of dynamic light scattering can be used to compare the stability of the oxide layer of standardized medical products manufactured on the basis of the TiO2 alloy.


Assuntos
Implantes Dentários , Ligas , Microscopia Eletrônica de Varredura , Óxidos , Propriedades de Superfície , Titânio/química
4.
Membranes (Basel) ; 12(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35207116

RESUMO

The processes of formation of one-dimensional nanostructures by the method of matrix synthesis was studied in this work. Nanowires (NWs) from magnetic metals of iron-group and copper (3-d metals) were synthesized in the pores of matrix-track membranes by galvanic deposition. NWs with both homogeneous elemental distribution (alloys) and with periodically alternating parts with different composition (layers) were obtained in matrices with different pore diameters and under different parameters of the galvanic process. The transport of ions, which determined the growth of wires, in pores of different sizes was analyzed. The influence of the size of pore channels on the features of NWs growth, the correlation between the elemental composition of the NWs and the growth electrolyte, as well as the influence of the growth conditions (voltage and pore diameter) were investigated. Approaches to formation of thin layers in layered NWs were studied. This included the choice of methods for controlling the pulse duration, slowing down the growth rate by the dilution of the solution, the use of additives and the work with reference electrode. The study of NWs was carried out using visualization and analysis of their structure using transmission and scanning electron microscopy, electron diffraction, energy dispersive analysis, and elemental mapping. For the studied types of samples, a relationship was established between the growth conditions and the structure. This data raises the possibility of varying the magnetic properties of NWs.

5.
RSC Adv ; 9(1): 257-267, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521606

RESUMO

The development of fuel cells is an important part of alternative energy studies. High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) is a very promising and commercialized type of fuel cell since it allows the use of hydrogen contaminated with CO. However, current advances in HT-PEMFC are based on searching for more sustainable materials for the membrane electrode assembly. The key issue is to find new, more stable carbonaceous Pt-electrocatalyst supports instead of the traditional carbon black powder. In the present study, we primarily demonstrate a new electrode design concept. Complex carbon nanofiber paper (CNFP) electrodes, obtained by polyacrylonitrile (PAN) electrospinning with further pyrolysis at 900-1200 °C, are suitable for platinum deposition and were probed as the gas-diffusion electrode for HT-PEMFC. Complex composite electrodes were obtained by introducing zirconium and nickel salts into the electrospinning PAN solution. After pyrolysis, ZrO x and Ni(0) nanoparticles were distributed in the CNFP throughout the whole nanofiber volume, as it is seen in the high-resolution transmission electron microscopy images. The samples were thoroughly studied by X-ray photoelectron, Raman and impedance spectroscopy, cyclic voltammetry, and elemental analysis. The MEAs designed on platinized composite CNFPs demonstrate higher performance at 180 °C compared to non-composite ones and are comparable with commercial Celtec® P1000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA