Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(16): 9904-9916, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38967001

RESUMO

Small RNAs (sRNAs) are essential for normal plant development and range in size classes of 21-24 nucleotides. The 22nt small interfering RNAs (siRNAs) and miRNAs are processed by Dicer-like 2 (DCL2) and DCL1 respectively and can initiate secondary siRNA production from the target transcript. 22nt siRNAs are under-represented due to competition between DCL2 and DCL4, while only a small number of 22nt miRNAs exist. Here we produce abundant 22nt siRNAs and other siRNA size classes using long hairpin RNA (hpRNA) transgenes. By introducing asymmetric bulges into the antisense strand of hpRNA, we shifted the dominant siRNA size class from 21nt of the traditional hpRNA to 22, 23 and 24nt of the asymmetric hpRNAs. The asymmetric hpRNAs effectively silenced a ß-glucuronidase (GUS) reporter transgene and the endogenous ethylene insensitive-2 (EIN2) and chalcone synthase (CHS) genes. Furthermore, plants containing the asymmetric hpRNA transgenes showed increased amounts of 21nt siRNAs downstream of the hpRNA target site compared to plants with the traditional hpRNA transgenes. This indicates that these asymmetric hpRNAs are more effective at inducing secondary siRNA production to amplify silencing signals. The 22nt asymmetric hpRNA constructs enhanced virus resistance in plants compared to the traditional hpRNA constructs.


Assuntos
Arabidopsis , Plantas Geneticamente Modificadas , RNA Interferente Pequeno , Transgenes , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Plantas Geneticamente Modificadas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , Aciltransferases/genética , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotiana/genética , Nicotiana/virologia
2.
Plant J ; 117(4): 1206-1222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038953

RESUMO

MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.


Assuntos
Arabidopsis , MicroRNAs , Pareamento de Bases/genética , Plantas Geneticamente Modificadas/genética , RNA Interferente Pequeno/genética , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , RNA de Cadeia Dupla , Arabidopsis/genética
3.
Aging (Albany NY) ; 15(1): 92-107, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622275

RESUMO

BACKGROUND: Forkhead box proteins (FOXs) play important roles in multiple biological processes; while little is known regarding the role of FOX members in pancreatic adenocarcinoma (PAAD). This study aimed to comprehensively investigate the function of FOX family members in PAAD. METHODS: Expression and prognostic value of FOXs were analyzed by R language and GEPIA. Genetic alteration and promoter methylation level were analyzed using CBioPortal and UALCAN. Protein-protein interactions and gene functions were analyzed using STRING and DAVID. TIMER and SENESCopedia were utilized to analyze the correlation of FOXs with immune cell infiltration or tumor senescence. Protein levels of FOXs were detected by immunohistochemistry. RESULTS: Expression of 15 of 50 FOXs were significantly elevated in PAAD. Among these 15 differentially expressed FOXs (DE-FOXs), 4 were significantly associated with the clinical cancer stage and 4 were negatively associated with overall survival. Functions of DE-FOXs were related to epithelial tube morphogenesis, nuclear chromatin, and DNA-binding. Promoter methylation and genomic alterations were not major causes of FOX dysregulation. Most DE-FOX was correlated with diverse immune infiltration cells. Seven of the DE-FOXs were positively related to tumor senescence. The protein levels of FOXM1, FOXP1, and FOXN3 were negatively correlated with OS in the collected PAAD patients. CONCLUSIONS: FOXM1, FOXP1, and FOXN3 have prognostic value. Seven FOXs were related senescence, whereas most DE-FOXs were related to immune infiltration in PAAD. Our findings are instructive for future research on FOX family and provide novel insights into the selection of FOXs with potential prognostic or therapeutic target value.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Biologia Computacional , Genômica , Prognóstico , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética , Neoplasias Pancreáticas
4.
Plant J ; 111(2): 360-373, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506331

RESUMO

Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.


Assuntos
Arabidopsis , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Regulação da Expressão Gênica de Plantas , Phytophthora/fisiologia , Doenças das Plantas/genética
5.
Front Microbiol ; 13: 856106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401482

RESUMO

Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25-26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25-26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3 , strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25-26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.

6.
World J Surg Oncol ; 19(1): 295, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615531

RESUMO

BACKGROUND: Laennec's capsule has been found for about 200 years. However, laparoscopic anatomical right and left hemihepatectomy (LARH and LALH) using Laennec's approach are rarely reported. METHODS: We retrospectively analyzed the technical details and the surgical outcomes of 15 patients who underwent LAH via Laennec's approach between May 2017 and July 2020. The operation time, intraoperative blood loss, postoperative complications, and hospital stay were recorded and analyzed. RESULTS: Four of 15 patients were diagnosed with hepatic hemangioma, 2 had hepatolithiasis, and 9 patients had primary liver cancer. During the surgery, Laennec's approach was used for LAH without conversion to open surgery. Four patients were treated with LARH, and 11 patients were cured with LALH. The mean age of the patients was 62.1 ± 6.5 years, and four were male. The mean operative time, blood loss, and length of the postoperative hospital stay were 193 ± 49 min, 247 ± 120 mL, and 8.7 ± 2.0 days, respectively. There was no incidence of postoperative bile leakage and bleeding. No mortality occurred. We also demonstrated that Laennec's capsule does exist around the peripheral hepatic veins with histological confirmation. CONCLUSIONS: Laennec's approach is safe and feasible for LAH. Precise isolation of Laennec's approach based on Laennec's capsule helps to standardize the surgical techniques for laparoscopic anatomical hepatectomy.


Assuntos
Laparoscopia , Litíase , Hepatopatias , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
7.
Genes (Basel) ; 10(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208028

RESUMO

Hairpin-structured (hp) RNA has been widely used to induce RNA interference (RNAi) in plants and animals, and an in vivo expression system for hpRNA is important for large-scale RNAi applications. Bacterial expression systems have so far been developed for in vivo expression of hpRNA or double-stranded (ds) RNA, but the structure of the resulting RNAi molecules has remained unclear. Here we report that long hpRNAs expressed in the bacteria Escherichia coli and Sinorhizobium meliloti were largely processed into shorter dsRNA fragments with no or few full-length molecules being present. A loss-of-function mutation in the dsRNA-processing enzyme RNase III, in the widely used E. coli HT115 strain, did not prevent the processing of hpRNA. Consistent with previous observations in plants, the loop sequence of long hpRNA expressed in Agrobacterium-infiltrated Nicotiana benthamiana leaves was excised, leaving no detectable levels of full-length hpRNA molecule. In contrast to bacteria and plants, long hpRNAs expressed in the budding yeast Saccharomyces cerevisiae accumulated as intact, full-length molecules. RNA extracted from hpRNA-expressing yeast cells was shown to be capable of inducing RNAi against a ß-glucuronidase (GUS) reporter gene in tobacco leaves when applied topically on leaf surfaces. Our results indicate that yeast can potentially be used to express full-length hpRNA molecules for RNAi and perhaps other structured RNAs that are important in biological applications.


Assuntos
Conformação de Ácido Nucleico , RNA de Cadeia Dupla/química , Saccharomyces cerevisiae/química , Agrobacterium/química , Agrobacterium/genética , Escherichia coli/química , Escherichia coli/genética , Mutação com Perda de Função , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Ribonuclease III/química , Ribonuclease III/genética , Saccharomyces cerevisiae/genética , Nicotiana/química , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA