Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1157891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020864

RESUMO

Purpose: Exploring a non-invasive method to accurately differentiate peripheral small cell lung cancer (PSCLC) and peripheral lung adenocarcinoma (PADC) could improve clinical decision-making and prognosis. Methods: This retrospective study reviewed the clinicopathological and imaging data of lung cancer patients between October 2017 and March 2022. A total of 240 patients were enrolled in this study, including 80 cases diagnosed with PSCLC and 160 with PADC. All patients were randomized in a seven-to-three ratio into the training and validation datasets (170 vs. 70, respectively). The least absolute shrinkage and selection operator regression was employed to generate radiomics features and univariate analysis, followed by multivariate logistic regression to select significant clinical and radiographic factors to generate four models: clinical, radiomics, clinical-radiographic, and clinical-radiographic-radiomics (comprehensive). The Delong test was to compare areas under the receiver operating characteristic curves (AUCs) in the models. Results: Five clinical-radiographic features and twenty-three selected radiomics features differed significantly in the identification of PSCLC and PADC. The clinical, radiomics, clinical-radiographic and comprehensive models demonstrated AUCs of 0.8960, 0.8356, 0.9396, and 0.9671 in the validation set, with the comprehensive model having better discernment than the clinical model (P=0.036), the radiomics model (P=0.006) and the clinical-radiographic model (P=0.049). Conclusions: The proposed model combining clinical data, radiographic characteristics and radiomics features could accurately distinguish PSCLC from PADC, thus providing a potential non-invasive method to help clinicians improve treatment decisions.

2.
Diagn Interv Radiol ; 29(3): 478-491, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36994842

RESUMO

To quantitatively analyze the risk factors for air embolism following computed tomography (CT)-guided percutaneous transthoracic needle biopsy (PTNB) and qualitatively review their characteristics. The databases of PubMed, Embase, Web of Science, Wanfang Data, VIP information, and China National Knowledge Infrastructure were searched on January 4, 2021, for studies reporting the occurrence of air embolisms following CT-guided PTNB. After study selection, data extraction, and quality assessment, the characteristics of the included cases were qualitatively and quantitatively analyzed. A total of 154 cases of air embolism following CT-guided PTNB were reported. The reported incidence was 0.06% to 4.80%, and 35 (22.73%) patients were asymptomatic. An unconscious or unresponsive state was the most common symptom (29.87%). Air was most commonly found in the left ventricle (44.81%), and 104 (67.53%) patients recovered without sequelae. Air location (P < 0.001), emphysema (P = 0.061), and cough (P = 0.076) were associated with clinical symptoms. Air location (P = 0.015) and symptoms (P < 0.001) were significantly associated with prognosis. Lesion location [odds ratio (OR): 1.85, P = 0.017], lesion subtype (OR: 3.78, P = 0.01), pneumothorax (OR: 2.16, P = 0.003), hemorrhage (OR: 3.20, P < 0.001), and lesions located above the left atrium (OR: 4.35, P = 0.042) were significant risk factors for air embolism. Based on the current evidence, a subsolid lesion, being located in the lower lobe, the presence of pneumothorax or hemorrhage, and lesions located above the left atrium were significant risk factors for air embolism.


Assuntos
Embolia Aérea , Neoplasias Pulmonares , Pneumotórax , Humanos , Pneumotórax/epidemiologia , Pneumotórax/etiologia , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/epidemiologia , Embolia Aérea/etiologia , Biópsia por Agulha/efeitos adversos , Biópsia por Agulha/métodos , Pulmão/patologia , Fatores de Risco , Neoplasias Pulmonares/patologia , Hemorragia/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Biópsia Guiada por Imagem/efeitos adversos , Biópsia Guiada por Imagem/métodos , Radiografia Intervencionista/efeitos adversos , Radiografia Intervencionista/métodos , Estudos Retrospectivos
3.
Acta Radiol ; 64(4): 1431-1438, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36380521

RESUMO

BACKGROUND: More and more pulmonary ground-glass nodules (GGNs) are screened with the extensive usage of low-dose computed tomography (CT). The need of CT-guided percutaneous puncture biopsy of GGN remains controversial. PURPOSE: To explore the diagnostic accuracy of CT-guided percutaneous puncture biopsy of GGNs. MATERIAL AND METHODS: We searched PubMed, EMBASE, the Cochrane Library, and CNKI. Included studies reported the puncture biopsy results of pulmonary GGNs, including the number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases. After evaluating the studies, statistical analysis, and quality assessment, the pooled diagnostic sensitivity (SEN), specificity (SPE), and diagnostic odds ratio (DOR) were calculated. The summary receiver operating characteristic (SROC) curve was constructed and the area under the curve (AUC) was calculated. Subgroup analysis was performed according to whether spiral CT or fluoroscopy-guided CT was used in the study. RESULTS: This meta-analysis included 14 studies with a total of 759 patients (702 samples). The pooled SEN, SPE, and DOR of CT-guided puncture biopsy of pulmonary GGNs were 0.91 (95% confidence interval [CI] = 0.89-0.94), 0.99 (95% CI = 0.95-1.00), and 138.72 (95% CI = 57.98-331.89), respectively. The AUC was 0.97. CONCLUSION: Our results indicated that CT-guided puncture biopsy of GGNs has high SEN, SPE, and DOR, which proved that CT-guided puncture biopsy was a good way to determine the pathological nature of GGN.


Assuntos
Nódulos Pulmonares Múltiplos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia Computadorizada Espiral , Sensibilidade e Especificidade , Biópsia por Agulha
4.
Technol Cancer Res Treat ; 21: 15330338221078732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35234540

RESUMO

Purpose We aimed to determine the epidermal growth factor receptor (EGFR) genetic profile of lung cancer in Asians, and develop and validate a non-invasive prediction scoring system for EGFR mutation before treatment. Methods This was a single-center retrospective cohort study using data of patients with lung cancer who underwent EGFR detection (n = 1450) from December 2014 to October 2020. Independent predictors were filtered using univariate and multivariate logistic regression analyses. According to the weight of each factor, a prediction scoring system for EGFR mutation was constructed. The model was internally validated using bootstrapping techniques and temporally validated using prospectively collected data (n = 210) between November 2020 and June 2021.Results In 1450 patients with lung cancer, 723 single mutations and 51 compound mutations were observed in EGFR. Thirty-nine cases had two or more synchronous gene mutations. We developed a scoring system according to the independent clinical predictors and stratified patients into risk groups according to their scores: low-risk (score <4), moderate-risk (score 4-8), and high-risk (score >8) groups. The C-statistics of the scoring system model was 0.754 (95% CI 0.729-0.778). The factors in the validation group were introduced into the prediction model to test the predictive power of the model. The results showed that the C-statistics was 0.710 (95% CI 0.638-0.782). The Hosmer-Lemeshow goodness-of-fit showed that χ2 = 6.733, P = 0.566. Conclusions The scoring system constructed in our study may be a non-invasive tool to initially predict the EGFR mutation status for those who are not available for gene detection in clinical practice.


Assuntos
Neoplasias Pulmonares , Povo Asiático/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Estudos Retrospectivos
5.
Technol Cancer Res Treat ; 21: 15330338221085357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35297696

RESUMO

Purpose: To compare the diagnostic accuracy and safety of computed tomography (CT)-guided core needle biopsy (CNB) between pulmonary ground-glass and solid nodules using propensity score matching (PSM) method and determine the relevant risk factors. Methods: This was a single-center retrospective cohort study using data from 665 patients who underwent CT-guided CNB of pulmonary nodules in our hospital between May 2019 and May 2021, including 39 ground-glass nodules (GGNs) and 626 solid nodules. We used a 1:4 PSM analysis to compared the diagnostic yields and complications rates of CT-guided CNB between 2 groups. Results: After PSM, 170 cases involved in the comparison (34 GGNs vs 136 solid nodules) were randomly matched (1:4) by patient demographics, clinical history, lesion characteristics, and procedure-related factors. There was no statistically significant difference in the diagnostic yields and complications rates between 2 groups. Significant pneumothorax incidence increase was noted at small lesion size, deep lesion location, and traversing interlobar fissure (P < .05). Post-biopsy hemorrhage was a protective factor for pneumothorax (P < .05). The size/proportion of consolidation of GGN did not influence the diagnostic accuracy and complication incidence (P > .05). Conclusions: The accuracy and safety of CT-guided CNB were comparable for ground-glass and solid nodules and the size/proportion of consolidation of GGN may be not a relevant risk factor. The biopsy should avoid traversing interlobar fissure as far as possible. Smaller lesion size and deeper lesion location may lead to higher pneumothorax rate and post-biopsy hemorrhage may be a protective factor for pneumothorax.


Assuntos
Biópsia Guiada por Imagem , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Biópsia com Agulha de Grande Calibre/métodos , Hemorragia/etiologia , Humanos , Biópsia Guiada por Imagem/efeitos adversos , Neoplasias Pulmonares/diagnóstico , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Pneumotórax , Pontuação de Propensão , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
6.
Acad Radiol ; 29 Suppl 2: S137-S144, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34175210

RESUMO

RATIONALE AND OBJECTIVES: To develop and validate a nomogram for differentiating second primary lung cancers (SPLCs) from pulmonary metastases (PMs). MATERIALS AND METHODS: A total of 261 lesions from 253 eligible patients were included in this study. Among them, 195 lesions (87 SPLCs and 108 PMs) were used in the training cohort to establish the diagnostic model. Twenty-one clinical or imaging features were used to derive the model. Sixty-six lesions (32 SPLCs and 34 PMs) were included in the validation set. RESULTS: After analysis, age, lesion distribution, type of lesion, air bronchogram, contour, spiculation, and vessel convergence sign were considered to be significant variables for distinguishing SPLCs from PMs. Subsequently, these variables were selected to establish a nomogram. The model showed good distinction in the training set (area under the curve = 0.97) and the validation set (area under the curve = 0.92). CONCLUSION: This study found that the nomogram calculated from clinical and radiological characteristics could accurately classify SPLCs and PMs.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Nomogramas , Tórax/patologia , Tomografia Computadorizada por Raios X/métodos
7.
Front Oncol ; 11: 801213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047410

RESUMO

BACKGROUND: The objective of this study was to assess the value of quantitative radiomics features in discriminating second primary lung cancers (SPLCs) from pulmonary metastases (PMs). METHODS: This retrospective study enrolled 252 malignant pulmonary nodules with histopathologically confirmed SPLCs or PMs and randomly assigned them to a training or validation cohort. Clinical data were collected from the electronic medical records system. The imaging and radiomics features of each nodule were extracted from CT images. RESULTS: A rad-score was generated from the training cohort using the least absolute shrinkage and selection operator regression. A clinical and radiographic model was constructed using the clinical and imaging features selected by univariate and multivariate regression. A nomogram composed of clinical-radiographic factors and a rad-score were developed to validate the discriminative ability. The rad-scores differed significantly between the SPLC and PM groups. Sixteen radiomics features and four clinical-radiographic features were selected to build the final model to differentiate between SPLCs and PMs. The comprehensive clinical radiographic-radiomics model demonstrated good discriminative capacity with an area under the curve of the receiver operating characteristic curve of 0.9421 and 0.9041 in the respective training and validation cohorts. The decision curve analysis demonstrated that the comprehensive model showed a higher clinical value than the model without the rad-score. CONCLUSION: The proposed model based on clinical data, imaging features, and radiomics features could accurately discriminate SPLCs from PMs. The model thus has the potential to support clinicians in improving decision-making in a noninvasive manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA