Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(4): 1711-1721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37474886

RESUMO

Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Ubiquinona/análogos & derivados , Animais , Peroxidação de Lipídeos , Cobre/toxicidade , Galinhas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ferro
2.
Vet Anim Sci ; 20: 100295, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37207038

RESUMO

A captive adult male giant panda (Guangzhou Chimelong Safari Park, CHINA) presented with azoospermia and enlarged left testicle. A tentative diagnosis of testicular neoplasia was made, and confirmed as testicular seminoma cases by testicular ultrasound, computed tomography (CT), testicular biopsy, and tumor marker examination findings. Based on the diagnostic results, the treatment of choice was surgical resection of the testicular tumor under general anesthesia. And the histopathological findings of the excised neoplasm were consistent with those of testicular seminoma. In addition, no tumor recurrence was observed after surgery, which indicates that our surgical and post-operative treatments were effective. The surgical treatment adopted in this case report is safe for patients and provides the best solution for the diagnosis and treatment of giant panda testicular seminoma. To our knowledge this is the first detailed report of surgical resection of testicular seminoma in the giant panda.

3.
Environ Sci Pollut Res Int ; 29(50): 75344-75355, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35653021

RESUMO

Arsenic is a toxic heavy metal widely found in the natural environment and has adverse effects on the health of waterfowl and human. Curcumin (CUR), a natural pigment of the golden spice turmeric, exhibits excellent anti-tumor, anti-inflammatory and anti-oxidant activities. But the effects of CUR on duck spleen exposed to arsenic remain largely unknown. In this study, 75 ducks were divided randomly into Control, L-ATO, M-ATO, H-ATO and CUR + H-ATO groups to systematically analyze the underlying role of CUR. The results showed that arsenic trioxide (ATO) led to growth retardation of ducks, hyaline degeneration and sparse cell arrangement on their spleen. And in the ATO-exposed ducks, the levels of immunoglobulins (Ig; IgA, IgG, IgM) in the serum and the expression of autophagy-related genes (Atg5, P62, LC3I, LC3II, LC3II/I, Beclin-1) were significantly upregulated compared with the control ducks. Moreover, ATO also activated NF-κB signal pathway and upregulated the expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1ß, IL-2, IL-18). Meanwhile, application of CUR alleviated the ATO toxicity with the release of growth inhibition, and the reduced hyaline degeneration and distortion of the spleen capsule. CUR also suppressed ATO-induced NF-κB activation, pro-inflammatory cytokine addition and expression of autophagy-related genes. Overall, these results suggested that CUR might exert a protective effect against ATO-induced immunosuppression in ducks via anti-inflammation and autophagy restoring.


Assuntos
Arsênio , Curcumina , Metais Pesados , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Arsênio/farmacologia , Trióxido de Arsênio , Autofagia , Proteína Beclina-1/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Citocinas , Patos/metabolismo , Imunoglobulina A/farmacologia , Imunoglobulina A/uso terapêutico , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Imunoglobulina M/farmacologia , Imunoglobulina M/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Metais Pesados/farmacologia , NF-kappa B/metabolismo , Baço/metabolismo , Fator de Necrose Tumoral alfa
4.
Chem Biol Interact ; 354: 109821, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35051378

RESUMO

Arsenic has recently received widespread attention due to its high toxicological effects on multiple animals; however, the mechanism underlying this toxicity is unclear. We investigated the damaging effects of arsenic trioxide (ATO) on hepatocytes and the effects of regulating autophagy on the hepatocyte damage induced by ATO exposure. First, we investigated the effects of ATO exposure (0, 0.6, 1.2, 2.4, and 4.8 µM) on the biochemical function and autophagy of chicken hepatocytes. The findings showed that as the concentration of ATO increased, the lactate dehydrogenase (LDH) concentration increased, more autophagosomes were observed via transmission electron microscopy (TEM), and the gene and protein expression levels of P62, LC3Ⅱ, and Beclin1 increased. Adding N-acetyl-l-cystine (NAC, 1 mM) attenuated autophagy and the hepatocyte damage induced by ATO. Then, we used rapamycin (Rapa) and 3-methylpurine (3-MA) to regulate the autophagy induced by exposure to 4.8 µM ATO and observed changes in the antioxidant capacity and apoptosis rate of chicken hepatocytes. Induction of autophagy reduced ATO-induced hepatocyte apoptosis but caused no significant effect on oxidative stress in chicken hepatocytes. Inhibition of autophagy exacerbated ATO-induced hepatocyte oxidative stress and apoptosis. These findings demonstrate that autophagy plays an important role in ATO-induced cell damage.


Assuntos
Trióxido de Arsênio
5.
Toxicol Appl Pharmacol ; 434: 115820, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896432

RESUMO

Arsenic is a well-known environmental pollutant due to its toxicity, which can do harm to animals and human. Curcumin is a polyphenolic compound derived from turmeric, commonly accepted to have antioxidant properties. However, whether curcumin can ameliorate the damage caused by arsenic trioxide (ATO) in duck skeletal muscle remains largely unknown. Therefore, the present study aims to investigate the potential molecular mechanism of curcumin against ATO-induced skeletal muscle injury. The results showed that treating with curcumin could attenuate body weight loss induced by ATO and reduced arsenic content accumulation in the skeletal muscle of duck. Curcumin was also able to alleviated the oxidative stress triggered by ATO, which was manifested by the increase of T-AOC and SOD, and MDA decrease. Moreover, we observed that curcumin could ease mitochondrial damage and vacuolate degeneration of nucleus. Our further investigation found that ATO disrupted normal mitochondrial fission/fusion (Drp1, OPA1, Mfn1/2) and restrained mitochondrial biogenesis (PGC-1α, Nrf1/2, TFAM), while curcumin could promote mitochondrial fusion and activated PGC-1α pathway. Furthermore, curcumin was found that it could not only reduce the mRNA and protein levels of mitophagy (PINK1, Parkin, LC3, p62) and pro-apoptotic genes (p53, Bax, Caspase-3, Cytc), but also increased the levels of anti-apoptotic genes (Bcl-2). In conclusion, curcumin was able to alleviate ATO-induced skeletal muscle damage by improving mitophagy and preserving mitochondrial function, which can serve as a novel strategy to take precautions against ATO toxicity.


Assuntos
Arsênio/toxicidade , Curcumina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biologia Computacional , Patos , Poluentes Ambientais/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
J Inorg Biochem ; 217: 111396, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610032

RESUMO

Arsenic trioxide (As2O3) is widely used in traditional Chinese medicine to treat tumors. This study investigated the effect of As(III) on pyroptosis in murine hepatocytes in vitro and how this relates to autophagy. NCTC1469-cells were treated with As(III) alone (6, 12 and 18 µM) or in combination with N-acetylcysteine (NAC,1 mM), 3-methyladenine (3-MA, 5 mM) or rapamycin (Rapa,100 nM) for 24 h. The results showed that As(III)-treatment reduced cell viability in a dose-dependent manner, but induced lactic dehydrogenase (LDH) activity. As(III)-treatment also resulted in increased intracellular reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (MMP), therefore promoting pyroptosis. Moreover, As(III)-treatment upregulated the expression of autophagy and pyroptosis-related genes (LC3-A, LC3-B, P62, Beclin-1, Atg5, Caspase-1, Gasdermin D, IL-18, IL-1ß) and downregulated the expression of m-TOR, NLRP3, ASC genes. Meanwhile the accumulation of light chain 3-B/A (LC3B/LC3A), autophagy-related gene 5 (Atg-5), Bcl-2-interacting protein (Beclin-1), Caspase-1, Gasdermin D, interleukin-1ß (IL-1ß), IL-18 and poptosis-associated speck-like protein (ASC) proteins were upregulated while nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) was downregulated in all As(III)-treatment groups. Furthermore, the inhibition of autophagy by 3-MA aggravated AsIII-induced pyroptosis and cytotoxicity. However, NAC or Rapa markedly alleviated the abovementioned phenomenon under As(III) stress. In addition, we speculate that the protective mechanism of NAC on As(III)-induced pyroptosis in hepatocytes mainly include the elimination of ROS because of the chelation of As(III) in the culture medium. In conclusion, these results provide new insight into the mechanisms underlying AsIII-induced cytotoxicity and pyroptosis in hepatocytes in vitro.


Assuntos
Trióxido de Arsênio , Autofagia , Piroptose , Animais , Camundongos , Trióxido de Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
Toxicol In Vitro ; 61: 104629, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31442540

RESUMO

To characterize the cellular effects and mechanism of arsenic trioxide (ATO)-induced hepatotoxicity in broiler chickens, increasing concentrations of ATO (0, 0.6, 1.2, 2.4, and 4.8 µM) were added to chicken hepatocyte cultures in vitro. The changes in hepatocyte morphology, oxidative stress and apoptosis were evaluated using fluorescence microscopy and flow cytometry. The effects of ATO on mRNA or protein expression of antioxidant enzymes, especially methionine sulfoxide reductase (Msr), were analyzed using qRT-PCR and western blotting assays. Increased apoptosis were concomitant with increased reactive oxygen species (ROS) accumulation and upregulation of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) with increasing ATO concentrations. Moreover, G1 phase arrest and dysregulation of the balance between antiapoptotic versus proapoptotic factors were noted. Furthermore, upregulation of HO-1, SOD-1, and TRX in the ATO groups were consistent with ATO-induced oxidative damage. High Msr, SOD-1, TRX, Bak1, Bax, and p53 protein levels in the ATO groups indicate that these proteins may have accumulated to counter ATO-induced oxidative stress. ROS scavenger N-acetyl-l-cysteine (NAC) could reverse ATO-induced oxidative damage and restore hepatocyte viability, even with compromised Msr function. Our findings suggest that Msr can protect broiler hepatocytes against ATO-induced oxidative stress. Furthermore, NAC-mediated reversal of oxidative damage may represent a strategy to mitigate potential economic losses associated with arsenic poisoning in the poultry industry.


Assuntos
Trióxido de Arsênio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Galinhas , Hepatócitos/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA