Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117736, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38242219

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Physalis L. (Solanaceae) is commonly used in the treatment of dermatitis, leprosy, bronchitis, pneumonia, hepatitis and rheumatism in China and other Asian countries. AIM OF THE REVIEW: This article reviews the resources, cultivation, phytochemistry, pharmacological properties, and applications of Physalis L., and proposes further research strategies to enhance its therapeutic potential in treating various human diseases. MATERIALS AND METHODS: We conducted a systematic search of electronic databases, including CNKI, SciFinder and PubMed, using the term "Physalis L." to collect information on the resources, phytochemistry, pharmacological activities, and applications of Physalis L. in China during the past ten years (2013.1-2023.1). RESULTS: So far, a variety of chemical constituents have been isolated and identified from Physalis L. mainly including steroids, flavonoids, and so on. Various pharmacological activities were evaluated by studying different extracts of Physalis L., these activities include anti-inflammatory, antibacterial, antioxidant, antiviral, antineoplastic, and other aspects. CONCLUSION: Physalis L. occupies an important position in the traditional medical system. It is cost-effective and is a significant plant with therapeutic applications in modern medicine. However, further in-depth studies are needed to determine the medical use of this plant resources and cultivation, chemical composition, pharmacological effects and applications.

2.
J Cancer ; 15(1): 126-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164289

RESUMO

Background: KIAA1429, a member of the RNA methyltransferase complex, is involved in cancer progression; however, the clinical significance and underlying mechanism of KIAA1429 in osteosarcoma (OS) remains to be reported. Methods: We evaluated the clinical significance of KIAA1429 in OS by performing RT-qPCR, microarray, and RNA sequencing and using published data as a reference. Two KIAA1429-targeting siRNA constructs were transfected into SW1353 cells. CCK-8 assay, colony formation assays, flow cytometry and the xenograft mouse model were conducted to investigate the biological function of KIAA1429 in OS. Results: The mRNA expression of KIAA1429 was markedly upregulated in 250 OS samples as compared to that in 71 non-cancer samples (standardized mean difference = 0.67). Summary receiver operating characteristic curve analysis revealed that KIAA1429 exhibited reliable diagnostic capacity to differentiate OS samples from non-cancer samples (area under the curve = 0.83). Further, survival analysis indicated that KIAA1429 overexpression was associated with shorter overall survival time. Knocking down KIAA1429 reduced m6A methylation levels, inhibited proliferation, prevented the growth of tumors in vivo and accelerated apoptosis of OS cells. In total, 395 KIAA1429-related genes were identified among co-expressed genes and differentially expressed genes, which were enriched in the cell cycle pathway. Protein-protein interaction network analysis showed that CDK1, CCNA2, and CCNB1 were KIAA1429-related genes, serving as major network hubs in OS. Conclusions: Our findings indicate that KIAA1429 plays an oncogenic role in OS and potentially facilitates OS progression via a mechanism that involves regulating CDK1, CCNA2, and CCNB1.

3.
J Ethnopharmacol ; 319(Pt 3): 117250, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37832811

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the theory of traditional Chinese medicine (TCM), diabetic cardiomyopathy (DCM) belongs to the category of "Xiaoke disease" according to the symptoms, and "stasis-heat" is the main pathogenesis of DCM. The Chinese medicine Anemarrhena asphodeloides Bunge (AAB), as a representative of heat-clearing and engendering fluid, is often used clinically in the treatment of DCM. Anemarrhena asphodeloides Bunge total saponins (RATS) are the main bioactive components of AAB, the modern pharmacologic effects of RATS are anti-inflammatory, hypoglycemic, and cardioprotective. However, the potential protective mechanisms of RATS against DCM remain largely undiscovered. AIM OF THE STUDY: The primary goal of this study was to explore the effect of RATS on DCM and its mechanism of action. MATERIALS AND METHODS: Streptozotocin and a high-fat diet were used to induce DCM in rats. UHPLC/Q-TOF-MS was used to determine the chemical components of RATS. The degenerative alterations and apoptotic cells in the heart were assessed by HE staining and TUNEL. Network pharmacology was used to anticipate the probable targets and important pathways of RATS. The alterations in metabolites and main metabolic pathways in heart tissue were discovered using 1 H-NMR metabolomics. Ultimately, immunohistochemistry was used to find critical pathway protein expression. RESULTS: First of all, UHPLC/Q-TOF-MS analysis showed that RATS contained 11 active ingredients. In animal experiments, we found that RATS lowered blood glucose and lipid levels in DCM rats, and alleviated cardiac pathological damage, and decreased cardiomyocyte apoptosis. Furthermore, the study found that RATS effectively reduced inflammatory factor release and the level of oxidative stress. Mechanistically, RATS downregulated the expression levels of PI3K, AKT, HIF-1α, LDHA, and GLUT4 proteins. Additionally, glycolysis was discovered to be a crucial pathway for RATS in the therapy of DCM. CONCLUSIONS: Our findings suggest that the protective effect of RATS on DCM may be attributed to the inhibition of the PI3K/AKT/HIF-1α pathway and the correction of glycolytic metabolism.


Assuntos
Anemarrhena , Diabetes Mellitus , Cardiomiopatias Diabéticas , Saponinas , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Anemarrhena/química , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Glicólise
4.
Pathol Oncol Res ; 28: 1610404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911442

RESUMO

Introduction: We aimed to explore the abnormal expression of dual-specificity protein phosphatase 1 (DUSP1) and its latent molecular mechanisms in ovarian carcinoma (OVCA). Materials and Methods: Two clinical cohorts collected from two different hospitals were used to evaluate the expression of DUSP1 protein in OVCA tissues. RNA-sequencing and microarray datasets were utilised to verify DUSP1 expression at mRNA levels in both OVCA tissues and in the peripheral blood of OVCA patients. Furthermore, an integrated calculation was performed to pool the standard mean difference (SMD) from each cohort in order to comprehensively assess the expression of DUSP1 in OVCA. Furthermore, we examined the relationship among DUSP1, tumour microenvironment (TME), and chemotherapy resistance in OVCA. Moreover, we used pathway enrichment analysis to explore the underlying mechanisms of DUSP1 in OVCA. Results: A pooled SMD of -1.19 (95% CI [-2.00, -0.38], p = 0.004) with 1,240 samples revealed that DUSP1 was downregulated in OVCA at both mRNA and protein levels. The area under the receiver operating characteristic curve of 0.9235 indicated the downregulated DUSP1 in peripheral blood may have a non-invasive diagnostic value in OVCA. Through six algorithms, we identified that DUSP1 may related to tumour-infiltrating T cells and cancer associated fibroblasts (CAFs) in OVCA. Pathway enrichment demonstrated that DUSP1 might participate in the mitogen-activated protein kinase (MAPK) signalling pathway. Furthermore, DUSP1 may have relations with chemotherapy resistance, and a favourable combining affinity was observed in the paclitaxel-DUSP1 docking model. Conclusion: DUSP1 was downregulated in OVCA, and this decreasing trend may affect the infiltration of CAFs. Finally, DUSP1 may have a targeting relation with paclitaxel and participate in MAPK signaling pathways.


Assuntos
Fosfatase 1 de Especificidade Dupla , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Fosfatase 1 de Especificidade Dupla/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA Mensageiro/metabolismo , Microambiente Tumoral/genética
5.
Exp Biol Med (Maywood) ; 247(5): 395-408, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743578

RESUMO

In our studies, cyclin B1 (CCNB1) mRNA and protein were overexpressed in hepatocellular carcinoma (HCC) tissues compared with non-HCC tissues. Moreover, CCNB1 was overexpressed in the serum of HCC patients. The expression of CCNB1 was associated with several crucial clinicopathologic characteristics, and the HCC patients with overexpressed CCNB1 had worse overall survival outcomes. In the screening of interactional genes, a total of 266 upregulated co-expression genes, which were positively associated with CCNB1, were selected from the datasets, and 67 downregulated co-expression genes, which were negatively associated with CCNB1, were identified. The key genes might be functionally enriched in DNA replication and the cell cycle pathways. CDC20, CCNA2, PLK1, and FTCD were selected for further research because they were highly connected in the protein-protein interaction networks. Upregulated CDC20, CCNA2, and PLK1 and downregulated FTCD might result in undesirable overall survival outcomes for HCC patients. The univariate Cox analysis results showed that CDC20 and PLK1 might be two independent risk factors, while FTCD might be protective in HCC. Therefore, CCNB1 may participate in the cell cycle of HCC by regulating DNA replication, and CCNB1 may provide a direction for the diagnosis of early-stage HCC and targeted HCC therapy.


Assuntos
Carcinoma Hepatocelular , Ciclo Celular , Ciclina B1 , Replicação do DNA , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
6.
Exp Biol Med (Maywood) ; 247(2): 106-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644201

RESUMO

In this study, we aim to identify the clinical significance of basonuclin 1 (BNC1) expression in ovarian carcinoma (OV) and to explore its latent mechanisms. Via integrating in-house tissue microarrays, gene chips, and RNA-sequencing data, we explored the expression and clinical value of BNC1 in OV. Immunohistochemical staining was utilized to confirm the protein expression status of BNC1. A combined SMD of -2.339 (95% CI: -3.649 to -1.028, P < 0.001) identified that BNC1 was downregulated based on 1346 samples, and the sROC (AUC = 0.93) showed a favorable discriminatory ability of BNC1 in OV patients. We used univariate and multivariate Cox regulation to evaluate the prognostic role of BNC1 for OV patients, and a combined hazard ratio of 0.717 (95% CI: 0.445-0.989, P < 0.001) revealed that BNC1 was a protective factor for OV. Furthermore, the fraction of infiltrating naive B cells, memory B cells, and other immune cells showed statistical differences between the high- and low-BNC1 expression groups through cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Enrichment analysis showed that BNC1 may have a relationship with immune-related items in OV. By predicting the potential regulatory transcription factors (TFs) of BNC1, friend leukemia virus integration 1 (FLI1) may be a potential upstream TF of BNC1. Corporately, a decreasing trend of BNC1 may serve as a tumor suppressor and prognostic biomarker in OV patients. Moreover, BNC1 may take part in immune-related pathways and influence the fraction of tumor-infiltrating immune cells.


Assuntos
Proteínas de Ligação a DNA/imunologia , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células B de Memória/imunologia , Neoplasias Ovarianas/imunologia , Fatores de Transcrição/imunologia , Proteínas Supressoras de Tumor/imunologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Células B de Memória/patologia , Neoplasias Ovarianas/patologia
7.
Bioengineered ; 12(1): 325-340, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356818

RESUMO

The clinical significance and underlying molecular mechanism of miRNA-222-3p in metastatic prostate cancer (MPCa) remain unclear. The present study used a large number of cases (n = 1,502) based on miRNA chip and miRNA sequencing datasets to evaluate the expression and diagnostic potential of miRNA-222-3p in MPCa. We applied a variety of meta-analytic methods, including forest maps, sensitivity analysis, subgroup analysis and summary receiver operating characteristic curves, to prove the final results. MiRNA-222-3p was reduced in MPCa and had a moderate diagnostic potential in MPCa. We screened 118 miRNA-222-3p targets using three different methods including miRNA-222-3p transfected MPCa cell lines, online prediction databases and differently upregulated genes in MPCa. Moreover, functional enrichment analysis performed to explore the potential molecular mechanism of miRNA-222-3p showed that the potential target genes of miRNA-222-3p were significantly enriched in the p53 signal pathway. In the protein-protein interaction network analysis, SNAP91 was identified as a hub gene that may be closely related to MPCa. Gene chip and RNA sequencing datasets containing 1,237 samples were used to determine the expression level and diagnostic potential of SNAP91 in MPCa. SNAP91 was found to be overexpressed in MPCa and had a moderate diagnostic potential in MPCa. In addition, miRNA-222-3p expression was negatively correlated with SNAP91 expression in MPCa (r = -0.636, P = 0.006). These results demonstrated that miRNA-222-3p might play an important role in MPCa by negatively regulating SNAP91 expression. Thus, miRNA-222-3p might be a potential biomarker and therapeutic target of MPCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Transcriptoma/genética , Linhagem Celular Tumoral , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina , Metástase Neoplásica , Próstata/química , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA