Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neurosci Bull ; 40(1): 65-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37755676

RESUMO

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Encéfalo/metabolismo , Macrófagos , Isquemia Encefálica/metabolismo , Microglia/metabolismo , Perfilação da Expressão Gênica , Anti-Inflamatórios , Plasticidade Neuronal/fisiologia , Infarto/metabolismo
2.
Cell Rep ; 42(11): 113386, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948181

RESUMO

Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.


Assuntos
Neoplasias da Mama , Neuralgia , Humanos , Feminino , Paclitaxel/efeitos adversos , Neuralgia/induzido quimicamente , Maraviroc , Ácido Desoxicólico , Receptores CCR5
3.
Biomed Res Int ; 2022: 9973232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560962

RESUMO

In recent studies, stem cell-based therapy is a potential new approach in the treatment of stroke. The mechanism of human umbilical cord mesenchymal stem cell (hUMSC) transplantation as one of the new approaches in the treatment of ischemic stroke is still unclear. The aim of this study was to determine the traits of immune responses during stroke progression after treatment with human umbilical cord blood MSCs by bioinformatics, to predict potential prognostic biomarkers that could lead to sex differences, and to reveal potential therapeutic targets. The microarray dataset GSE78731 (mRNA profile) of middle cerebral artery occlusion (MCAO) rats was obtained from the Gene Expression Omnibus (GEO) database. First, two potentially expressed genes (DEGs) were screened using the Bioconductor R package. Ultimately, 30 specific DEGs were obtained (22 upregulated and 353 downregulated). Next, bioinformatic analysis was performed on these specific DEGs. We performed a comparison for the differentially expressed genes screened from between the hUMSC and MCAO groups. Gene Ontology enrichment and pathway enrichment analyses were then performed for annotation and visualization. Gene Ontology (GO) functional annotation analysis shows that DEGs are mainly enriched in leukocyte migration, neutrophil activation, neutrophil degranulation, the external side of plasma membrane, cytokine receptor binding, and carbohydrate binding. KEGG pathway enrichment analysis showed that the first 5 enrichment pathways were cytokine-cytokine receptor interaction, chemokine signal pathway, viral protein interaction with cytokine and cytokine receptor, cell adhesion molecules (CAMs), and phagosome. The top 10 key genes of the constructed PPI network were screened, including Cybb, Ccl2, Cd68, Ptprc, C5ar1, Il-1b, Tlr2, Itgb2, Itgax, and Cd44. In summary, hUMSC is likely to be a promising means of treating IS by immunomodulation.


Assuntos
Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Ratos , Animais , Prognóstico , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média , Biologia Computacional , Citocinas/genética , Ontologia Genética , NADPH Oxidase 2/genética
4.
Ann Hepatol ; 27(5): 100722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569812

RESUMO

INTRODUCTION AND OBJECTIVES: Circular RNAs (circRNAs) are identified to show important regulatory functions in cancer biology. We attempted to analyze the role of circ_0000291 in hepatocellular carcinoma (HCC) progression and its related mechanism. METHODS: The circular characteristic of circ_0000291 was tested using exonuclease RNase R. Cell proliferation was analyzed by 5-Ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assays. Cell apoptosis was measured by flow cytometry and a caspase 3 activity assay kit. Transwell assays were performed to analyze cell migration and invasion abilities. Sphere formation assay was conducted to analyze cell stemness. Dual-luciferase reporter and RNA-pull down assays were conducted to verify the interaction between microRNA-1322 (miR-1322) and circ_0000291 or ubiquitin conjugating enzyme E2 T (UBE2T). RESULTS: Circ_0000291 was markedly up-regulated in HCC tissues and cell lines. HCC patients with high expression of circ_0000291 displayed a low survival rate. Circ_0000291 knockdown restrained the proliferation, migration, invasion, and stemness and induced the apoptosis of HCC cells. Circ_0000291 directly interacted with miR-1322 and negatively regulated miR-1322 expression. Circ_0000291 knockdown-mediated anti-tumor impacts in HCC cells were largely overturned by the interference of miR-1322. miR-1322 directly paired with the 3' untranslated region (3'UTR) of UBE2T, and UBE2T was negatively regulated by miR-1322. UBE2T overexpression largely reversed circ_0000291 silencing-induced effects in HCC cells. Circ_0000291 positively regulated UBE2T expression by absorbing miR-1322 in HCC cells. Circ_0000291 silencing notably reduced the tumorigenic potential in vivo. CONCLUSION: Circ_0000291 facilitated HCC progression by targeting miR-1322/UBE2T axis, which provided novel potential biomarkers and targets for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
5.
Oxid Med Cell Longev ; 2022: 1260161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096262

RESUMO

OBJECTIVE: To investigate the molecular function of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB) underlying Alzheimer's disease (AD). METHODS: RNA sequencing data were used to filtrate differentially expressed genes (DEGs) in AD/nondementia control and PIK3CB-low/high groups. An unbiased coexpression network was established to evaluate module-trait relationships by using weight gene correlation network analysis (WGCNA). Global regulatory network was constructed to predict the protein-protein interaction. Further cross-talking pathways of PIK3CB were identified by functional enrichment analysis. RESULTS: The mean expression of PIK3CB in AD patients was significantly lower than those in nondementia controls. We identified 2,385 DEGs from 16,790 background genes in AD/control and PIK3CB-low/high groups. Five coexpression modules were established using WGCNA, which participated in apoptosis, axon guidance, long-term potentiation (LTP), regulation of actin cytoskeleton, synaptic vesicle cycle, FoxO, mitogen-activated protein kinase (MAPK), and vascular endothelial growth factor (VEGF) signaling pathways. DEGs with strong relation to AD and low PIK3CB expression were extracted to construct a global regulatory network, in which cross-talking pathways of PIK3CB were identified, such as apoptosis, axon guidance, and FoxO signaling pathway. The occurrence of AD could be accurately predicted by low PIK3CB based on the area under the curve of 71.7%. CONCLUSIONS: These findings highlight downregulated PIK3CB as a potential causative factor of AD, possibly mediated via apoptosis, axon guidance, and FoxO signaling pathway.


Assuntos
Doença de Alzheimer/genética , Orientação de Axônios/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteína Forkhead Box O1/metabolismo , Doença de Alzheimer/patologia , Apoptose , Regulação para Baixo , Feminino , Humanos , Masculino , Transdução de Sinais
6.
Eur J Neurosci ; 54(4): 5341-5356, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318540

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect during the course of cancer treatment, which is mainly manifested as a series of sensory abnormalities. At present, there are no recommended prevention or treatment strategies, and the underlying mechanisms are unclear. The ketogenic diet (KD), a special diet that is high in fat and low in carbohydrate intake, shows good therapeutic potential in children with epilepsy. In this study, it was found that KD significantly prevented paclitaxel-induced neuropathic nociception. Using the GSE113941 database, 281 differentially expressed genes (DEGs) were found in an animal model of CIPN and controls. The DEGs were mainly enriched in peroxisome proliferator activated receptor (PPAR) and oxidative phosphorylation signalling pathways. As a main regulatory pathway of lipid metabolism, the PPARγ signalling pathway was significantly upregulated in the KD model. In addition, KD also inhibited the expression of pro-inflammatory cytokines and the TLR4/NF-κB signalling pathway in the dorsal root ganglion (DRG) in paclitaxel-treated rats. In vitro, rat primary DRG neurons were used to investigate the role of PPARγ in paclitaxel-induced neurotoxicity. It was found that PPARγ agonist rosiglitazone significantly protected DRG neurons against cell apoptosis and reactive oxygen species generation induced by paclitaxel administration. Therefore, KD is a prospective treatment option when applied as a dietary intervention in the prevention and treatment of paclitaxel-induced neuropathic nociception, possibly through the activation of PPARγ and its neuroprotective functions.


Assuntos
Antineoplásicos Fitogênicos , Dieta Cetogênica , Doenças do Sistema Nervoso Periférico , Animais , Gânglios Espinais , Nociceptividade , PPAR gama , Paclitaxel/toxicidade , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley
7.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081630

RESUMO

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Assuntos
Testes de Aglutinação/métodos , Formação de Anticorpos/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Epitopos de Linfócito B/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , COVID-19/sangue , COVID-19/mortalidade , Epitopos/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Humanos , Imunidade Humoral , Análise em Microsséries/métodos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Peptídeos/imunologia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Mol Cell ; 81(13): 2736-2751.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932349

RESUMO

Cholesterol metabolism is tightly associated with colorectal cancer (CRC). Nevertheless, the clinical benefit of statins, the inhibitor of cholesterol biogenesis mevalonate (MVA) pathway, is inconclusive, possibly because of a lack of patient stratification criteria. Here, we describe that YAP-mediated zinc finger MYND-type containing 8 (ZMYND8) expression sensitizes intestinal tumors to the inhibition of the MVA pathway. We show that the oncogenic activity of YAP relies largely on ZMYND8 to enhance intracellular de novo cholesterol biogenesis. Disruption of the ZMYND8-dependent MVA pathway greatly restricts the self-renewal capacity of Lgr5+ intestinal stem cells (ISCs) and intestinal tumorigenesis. Mechanistically, ZMYND8 and SREBP2 drive the enhancer-promoter interaction to facilitate the recruitment of Mediator complex, thus upregulating MVA pathway genes. Together, our results establish that the epigenetic reader ZMYND8 endows YAP-high intestinal cancer with metabolic vulnerability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
9.
Front Aging Neurosci ; 13: 625690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716713

RESUMO

Background: This meta-analysis aimed to evaluate the relationship between serum uric acid (UA) and the risk of dementia and its subtypes. Methods: Embase, PubMed, and Web of Science were searched from inception to July 2020. Random-effect models were employed to analyze the standard mean difference (SMD) with the corresponding 95% confidence intervals (CI). Results: Twenty-three eligible studies involving 5,575 participants were identified. The overall results showed lower levels of UA in dementia relative to non-dementia controls [SMD = -0.32 (-0.64; -0.01) p = 0.04]. The subgroup analysis of the type of dementia demonstrated a significant association of UA with Alzheimer's disease (AD) [SMD = -0.58 (-1.02; -0.15) p = 0.009] and Parkinson's disease with dementia (PDD) [SMD = -0.33 (-0.52; -0.14) p = 0.001] but not with vascular dementia (VaD). The stratification analysis of the concentrations of UA revealed that the UA quartile 1-2 was negatively correlated with dementia and neurodegenerative subtypes (p < 0.05), whereas a positive correlation of UA quartile 4 with dementia was noted (p = 0.028). Additionally, the meta-regression analysis on confounders showed that not age, body mass index, diabetes mellitus, hypertension, or smoking but education (p = 0.003) exerted an influence of the UA in the risk estimate of dementia. Conclusions: Low concentrations of UA (< 292 µmol/L or 4.91 mg/dL) is a potential risk factor for AD and PDD but not for VaD. The mechanism of different concentrations of the UA in dementia needs to be confirmed through further investigation.

10.
Aging (Albany NY) ; 13(4): 6103-6114, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631722

RESUMO

The aim of this study is to determine the molecular functions of brain derived neurotrophic factor (BDNF) in Huntington's disease (HD). A total of 1,675 differentially expressed genes (DEGs) were overlapped from HD versus control and BDNF-low versus high groups. Five co-expression modules were constructed using weight gene correlation network analysis, among which the blue and turquoise modules were most strongly correlated with HD and low BDNF. Functional enrichment analyses revealed DEGs in these modules significantly enriched in GABAergic synapse, phagosome, cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), renin-angiotensin system (Ras), Ras-associated protein-1 and retrograde endocannabinoid signaling pathways. The intersection pathways of BDNF, such as cAMP, MAPK and Ras signaling pathways, were identified in global regulatory network. Further performance evaluation of low BDNF accurately predicted HD occurrence according to the area under the curve of 82.4%. In aggregate, our findings highlighted the involvement of low BDNF expression in HD pathogenesis, potentially mediated by cAMP, MAPK and Ras signaling pathways.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Huntington/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema Renina-Angiotensina/genética , Transdução de Sinais , Regulação para Baixo , Humanos , Doença de Huntington/genética
11.
Metab Brain Dis ; 35(5): 753-763, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086725

RESUMO

Stroke can cause death and disability and has a high incidence with many complications. So far, effective treatment options for stroke are still limited. MicroRNA-532-5p (miR-532-5p) is significantly downregulated in stroke. However, the role of miR-532-5p in ischemic stroke is still unclear. In this study, we established an in vivo middle cerebral artery occlusion (MCAO) model in mice. The expression level of miR-532-5p, neurological score, infarct area, neuronal apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway-related molecules were examined. Low miR-532-5p levels and high phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels were detected in the mouse MCAO model. MiR-532-5p overexpression improved neurological dysfunction, reduced the infarct area, attenuated neuronal injury and apoptosis, and promoted the activation of the PI3K/Akt signaling pathway in MCAO mice. In vitro, we treated mouse neuroblastoma cells (N2a) with oxygen-glucose deprivation and reperfusion (OGD/R). The expression level of miR-532-5p, cell viability, cell apoptosis, and the PI3K/Akt signaling pathway-related molecules were detected. Consistent with the in vivo tests, the miR-532-5p level was decreased and the PTEN level was increased in OGD-treated N2a cells in vitro. The miR-532-5p mimic increased cell viability, decreased cell apoptosis, and activated the PI3K/Akt signaling pathway. Furthermore, PTEN was verified as a target gene of miR-532-5p by luciferase reporter assay. PTEN overexpression attenuated the protective effect of miR-532-5p in OGD-treated N2a cells. In summary, these findings reveal that miR-532-5p protects against ischemic stroke by inhibiting PTEN and activating the PI3K/Akt signaling pathway and may serve as a novel therapeutic target for ischemic stroke.


Assuntos
AVC Isquêmico/genética , Fármacos Neuroprotetores , Animais , Apoptose/genética , Hipóxia Celular , Linhagem Celular , Glucose/deficiência , Infarto da Artéria Cerebral Média/patologia , Injeções Intraventriculares , AVC Isquêmico/metabolismo , AVC Isquêmico/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
12.
Front Bioeng Biotechnol ; 8: 619252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614606

RESUMO

Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3ß (GSK-3ß). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at -5, -4, -3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at -5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.

13.
J Biol Chem ; 295(2): 645-656, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806702

RESUMO

Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas Ativadoras de GTPase/química , Células HEK293 , Humanos , Modelos Moleculares , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Motivo Estéril alfa , Tensinas/química , Tensinas/metabolismo , Proteínas Supressoras de Tumor/química , Proteína rhoA de Ligação ao GTP/química
14.
Clin Neuropathol ; 39(1): 7-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31661069

RESUMO

Adult-onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder. Abnormally high signals of diffusion-weighted image (DWI) along the corticomedullary junction are a useful diagnostic indicator for patients with adult-onset NIID. However, the DWI abnormalities usually were observed in the late stage of disease; further study might be helpful to elucidate some clinical indicators regarding the early awareness of NIID. In this study, we summarized 9 patients with NIID from multiple centers. The mean age was 60.0 ± 6.2 years. The mean duration of disease was 4.4 ± 3.2 years. The most common symptoms included cognitive impairment, episodic encephalopathy, and bladder dysfunction. Among the 6 patients with bladder dysfunction, 3 patients had the symptom prior to the development of other neurological symptoms; 5 patients needed permanent cystostomy. Isolated high DWI signals on the splenium of corpus callosum were observed in 2 patients at the early stage. The characteristic intranuclear inclusions in the skin were identified in all patients and confirmed by electron microscopy. Episodic encephalopathy or bladder dysfunction prior to other neurological symptoms were valuable diagnostic indicators for adult-onset NIID. High DWI signals on the splenium of corpus callosum might be an early indicator for the diagnosis of NIID. The immunostain of anti-ubiquitin or anti-p62 antibody was a convenient and sensitive biomarker for NIID with the background of typical phenotype with cognitive impairment and autonomic dysfunctions.


Assuntos
Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/patologia , Pele/patologia , Adulto , Idoso , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico
15.
Ann Clin Transl Neurol ; 6(9): 1728-1738, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31429185

RESUMO

OBJECTIVE: To identify a new genetic cause in patients segregating distal hereditary motor neuropathy (dHMN) with an autosomal recessive pattern. METHODS: Whole-exome sequencing was conducted in two siblings and was combined with segregation analysis. Additionally, 83 unrelated dHMN patients with unknown genetic cause were screened. RNA analysis was performed using blood lymphocytes and HEK293 cells transfected with mutant plasmids. Immunohistochemistry and Western blot analysis was applied to the nerve tissue. The enzymatic activities of mutant proteins were measured in the cultured cells to verify the pathogenicity of variants. RESULTS: The clinical features of the patients showed late-onset phenotype of distal motor neuropathy without sensory involvement. We identified that compound heterozygous variants of c.1342C>T and c.2071_2072delGCinsTT in the membrane metalloendopeptidase (MME) gene co-segregated with the phenotype in a dHMN family. In an additional group of 83 patients with dHMN, compound heterozygous variants of c.1416+2T>C and c.2027C>T in MME were identified in one patient. The splice site variant c.1416+2T>C results in skipping of exon 13. The stop variant c.1342C>T induces mRNA degradation via nonsense-mediated mRNA decay. Transcript levels of MME in the lymphocytes showed no significant differences between the patients and controls. We also identified that MME variants were associated with mild decrease in protein expression in the sural nerve and significant impairments of enzymatic activity. INTERPRETATION: Variants in the MME gene were associated with not only a Charcot-Marie-Tooth neuropathy phenotype but also with an autosomal-recessive dHMN phenotype. Loss of function may play a role in the pathogenesis of dHMN.


Assuntos
Genes Recessivos , Neuropatia Hereditária Motora e Sensorial/genética , Mutação , Neprilisina/genética , Adolescente , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
16.
Scand J Immunol ; 90(5): e12804, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267559

RESUMO

Immune checkpoint inhibitors are among the newest, cutting-edge methods for the treatment of cancer. Currently, they primarily influence T cell adaptive immunotherapy targeting the PD-1/PD-L1 and CTLA-4/B7 signalling pathways. These inhibitors fight cancer by reactivating the patient's own adaptive immune system, with good results in many cancers. With the discovery of the "Don't Eat Me" molecule, CD47, antibody-based drugs that target the macrophage-related innate immunosuppressive signalling pathway, CD47-SIRPα, have been developed and have achieved stunning results in the laboratory and the clinic, but there remain unexplained instances of tumour immune escape. While investigating the immunological tolerance of cancer to anti-CD47 antibodies, a second "Don't Eat Me" molecule on tumour cells, beta 2 microglobulin (ß2m), a component of MHC class I, was described. Some tumour cells reduce their surface expression of MHC class I to escape T cell recognition. However, other tumour cells highly express ß2m complexed with the MHC class I heavy chain to send a "Don't Eat Me" signal by binding to leucocyte immunoglobulin-like receptor family B, member 1 (LILRB1) on macrophages, leading to a loss of immune surveillance. Investigating the mechanisms underlying this immunosuppressive MHC class I-LILRB1 signalling axis in tumour-associated macrophages will be useful in developing therapies to restore macrophage function and control MHC class I signalling in patient tumours. The goal is to promote adaptive immunity while suppressing the innate immune response to tumours. This work will identify new therapeutic targets for the development of pharmaceutical-based tumour immunotherapy.


Assuntos
Antígenos CD/imunologia , Tolerância Imunológica/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Neoplasias/terapia , Evasão Tumoral/imunologia , Microglobulina beta-2/imunologia , Imunidade Adaptativa/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Inata/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia
17.
Free Radic Biol Med ; 144: 16-34, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31202785

RESUMO

Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.


Assuntos
Aterosclerose/metabolismo , Ésteres do Colesterol/análise , Colesterol/análise , Ácidos Graxos Insaturados/análise , Lipidômica/métodos , Neoplasias Hepáticas/metabolismo , Animais , Aterosclerose/diagnóstico , Aterosclerose/patologia , Biomarcadores/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Ésteres do Colesterol/química , Ésteres do Colesterol/metabolismo , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Lipidômica/instrumentação , Neoplasias Hepáticas/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Camundongos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
18.
Crit Rev Microbiol ; 45(4): 369-393, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31106639

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.


Assuntos
Tratamento Farmacológico/métodos , Disbiose/induzido quimicamente , Disbiose/complicações , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/terapia , Humanos
19.
Onco Targets Ther ; 12: 2137-2147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962695

RESUMO

BACKGROUND: The disordered cell cycle and dysregulated expression of numerous oncogenes involved in tumor-relevant processes are highly related to the tumorigenesis of cervical cancer. Cyclin-dependent kinase 7 (CDK7) constitutes the indispensable catalytic subunit of CDK-activating kinase (CAK), which is required for both cell cycle transition and transcriptional regulation. However, research regarding the antitumor effects of CDK7 inhibition in cervical cancer remains unclear. PURPOSE: Our study aims to explore the antineoplastic effects of the CDK7 inhibitor THZ1 in cervical cancer cells and to find a potential agent for cervical cancer treatment. METHODS: The CRISPR-Cas9 system was used to knock down CDK7. The Cell Counting Kit-8 (CCK-8) assay was used to detect the cell viability after CDK7 depletion and THZ1 treatment. Western blot was employed to detect protein expression. The expression levels of mRNA were assayed through qRT-PCR. Flow cytometry analysis was used to assay the apoptotic cells and cell cycle distribution. Gene expression microarray analysis was used to identify the differential expression of the genes. Subcutaneous xenograft mouse model was performed to test the antineoplastic effects of THZ1 in vivo. RESULTS: We revealed that the genetic depletion of CDK7 using the CRISPR-Cas9 system exhibited great cell growth inhibition in cervical cancer cell lines, consistent with the effects of CDK7 blocking using THZ1. Cervical cancer cells were highly sensitive to THZ1 treatment, and a low concentration of THZ1 could induce substantial cell apoptosis. THZ1 specifically perturbed the phosphorylation of cell cycle regulator CDK1 and decreased the expression of cyclin B1, leading to a cell cycle blockage at the G2/M phase and inducing cell growth inhibition. The gene expression microarray analysis showed that massive oncogene transcripts, especially those associated with tumorigenesis, were preferential suppressed after THZ1 treatment. The qRT-PCR confirmed that several essential oncogenes in tumorigenesis (c-MYC, hTERT, RAD51, and BCL-2) and HPV viral oncogenes (E6 and E7) were preferentially repressed by THZ1. Moreover, THZ1 exhibited substantial antineoplastic effects against cervical cancer in vivo without inducing obvious side effects. CONCLUSION: These findings indicated that the CDK7 inhibitor THZ1 is a potential option in cervical cancer treatment owing to its ability to inhibit cell cycle progression and transcriptional activity.

20.
Free Radic Biol Med ; 144: 266-278, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30946962

RESUMO

Cardiovascular diseases (CVD), including ischemic heart diseases and cerebrovascular diseases, are the leading causes of morbidity and mortality worldwide. Atherosclerosis is the major underlying factor for most CVD. It is well-established that oxidative stress and inflammation are two major mechanisms leading to atherosclerosis. Under oxidative stress, polyunsaturated fatty acids (PUFA)-containing phospholipids and cholesterol esters in cellular membrane and lipoproteins can be readily oxidized through a free radical-induced lipid peroxidation (LPO) process to form a complex mixture of oxidation products. Overwhelming evidence demonstrates that these oxidized lipids are actively involved in the inflammatory responses in atherosclerosis by interacting with immune cells (such as macrophages) and endothelial cells. In addition to lipid lowering in the prevention and treatment of atherosclerotic CVD, targeting chronic inflammation has been entering the medical realm. Clinical trials are under way to lower the lipoprotein (a) (Lp(a)) and its associated oxidized phospholipids, which will provide clinical evidence that targeting inflammation caused by oxidized lipids is a viable approach for CVD. In this review, we aim to give an update on our understanding of the free radical oxidation of LPO, analytical technique to analyze the oxidation products, especially the oxidized phospholipids and cholesterol esters in low density lipoproteins (LDL), and focusing on the experimental and clinical evidence on the role of lipid oxidation in the inflammatory responses associated with CVD, including myocardial infarction and calcific aortic valve stenosis. The challenges and future directions in understanding the role of LPO in CVD will also be discussed.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Aterosclerose/metabolismo , Calcinose/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Infarto do Miocárdio/metabolismo , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/patologia , Ácidos Araquidônicos/metabolismo , Aterosclerose/diagnóstico , Aterosclerose/patologia , Calcinose/diagnóstico , Calcinose/patologia , Ésteres do Colesterol/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Radicais Livres/metabolismo , Humanos , Inflamação , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Lipoproteína(a)/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Estresse Oxidativo , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA