RESUMO
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Assuntos
Células-Tronco Mesenquimais , Análise de Sequência de RNA , Análise de Célula Única , Cordão Umbilical , Humanos , Cordão Umbilical/citologia , Animais , Ratos , Análise de Célula Única/métodos , Recém-Nascido , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Transcriptoma , Modelos Animais de DoençasRESUMO
Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.
Assuntos
Displasia Broncopulmonar , Disfunção Cognitiva , Hiperóxia , Nascimento Prematuro , Recém-Nascido , Feminino , Camundongos , Humanos , Animais , Hiperóxia/complicações , Hiperóxia/metabolismo , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Neurogênese , Disfunção Cognitiva/etiologia , Cognição , Pulmão/metabolismoRESUMO
The current study investigated the effects of sinapic acid on high-fat diet (HFD)-induced lipid metabolism and oxidative stress in male Syrian hamsters. Sinapic acid treatment significantly reduced body weight, epididymal fat, and perirenal fat mass in HFD hamsters. Sinapic acid also improved dyslipidemia levels (reducing the serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol, and increasing the high-density lipoprotein cholesterol) and increased T-AOC levels to mitigate oxidative stress injury. Moreover, sinapic acid intervention increased the activations of PPAR-γ, CPT-1, and CYP7A1 and decreased the activations of FAS, ACC1, SREBP1, SREBP2, and HMGCR in the livers of HFD hamsters. In addition, sinapic acid intervention also significantly inhibited the intestinal mRNA levels of Srebp2 and Npc1l1 in HFD hamsters. In conclusion, sinapic acid can significantly attenuate abnormal lipid metabolism in the development of HFD-induced obesity and reduce the level of oxidative stress to exert its anti-obesity effect. PRACTICAL APPLICATIONS: Obesity is the main cause of some chronic metabolic syndromes, such as dyslipidemia, nonalcoholic fatty liver disease, diabetes, and hyperuricemia. Searching for new, safe, and effective natural products in weight loss and fat reduction has become one of the hot research topics. As a natural source of simple phenolic acids, sinapic acid is present in fruits, vegetables, and grains and has been indicated to have anti-inflammatory, antioxidant, antihyperuricemic, lipid homeostasis regulation, and anticancer activities. However, the lipid metabolism- and oxidative stress-regulating activities of sinapic acid are not clear. Here, the current study investigated the lipid metabolism and oxidative stress regulating activities of sinapic acid in male Syrian hamsters fed a high-fat diet.
Assuntos
Dieta Hiperlipídica , Dislipidemias , Cricetinae , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Mesocricetus , Colesterol , Estresse Oxidativo , Obesidade , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologiaRESUMO
Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.
Assuntos
Displasia Broncopulmonar , Hiperóxia , Células-Tronco Mesenquimais , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Endoteliais , Humanos , Hiperóxia/genética , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Sequência de RNARESUMO
Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.
Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nascimento Prematuro , Animais , Displasia Broncopulmonar/terapia , Feminino , Humanos , Recém-Nascido , Pulmão , Lesão Pulmonar/terapia , Camundongos , GravidezRESUMO
Very preterm birth is associated with increased cardiovascular diseases and changes in myocardial structure. The current study aimed to investigate the impact of endothelial colony-forming cell (ECFC) treatment on heart morphological changes in the experimental model of neonatal high oxygen (O2 )-induced cardiomyopathy, mimicking prematurity-related conditions. Sprague-Dawley rat pups exposed to 95% O2 or room air (RA) from day 4 (P4) to day 14 (P14) were randomized to receive (jugular vein) exogenous human cord blood ECFC or vehicle at P14 (n = 5 RA-vehicle, n = 8 RA-ECFC, n = 8 O2 -vehicle and n = 7 O2 -ECFC) and the hearts collected at P28. Body and heart weights and heart to body weight ratio did not differ between groups. ECFC treatment prevented the increase in cardiomyocyte surface area in both the left (LV) and right (RV) ventricles of the O2 group (O2 -ECFC vs. O2 -vehicle LV: 121 ± 13 vs. 179 ± 21 µm2 , RV: 118 ± 12 vs. 169 ± 21 µm2 ). In O2 rats, ECFC treatment was also associated with a significant reduction in interstitial fibrosis in both ventricles (O2 -ECFC vs. O2 -vehicle LV: 1.07 ± 0.47 vs. 1.68 ± 0.41% of surface area, RV: 1.01 ± 0.74 vs. 1.77 ± 0.67%) and in perivascular fibrosis in the LV (2.29 ± 0.47 vs. 3.85 ± 1.23%) but in not the RV (1.95 ± 0.95 vs. 2.74 ± 1.14), and with increased expression of angiogenesis marker CD31. ECFC treatment had no effect on cardiomyocyte surface area or on tissue fibrosis of RA rats. Human cord blood ECFC treatment prevented cardiomyocyte hypertrophy and myocardial and perivascular fibrosis observed after neonatal high O2 exposure. ECFC could constitute a new regenerative therapy against cardiac sequelae caused by deleterious conditions of prematurity.
Assuntos
Cardiomiopatias/terapia , Células Endoteliais/transplante , Células Progenitoras Endoteliais/transplante , Oxigênio/toxicidade , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Cardiomiopatias/etiologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais/metabolismo , Humanos , Masculino , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , RegeneraçãoRESUMO
Bronchopulmonary dysplasia (BPD), the most common complication of extreme preterm birth, can be caused by oxygen-related lung injury and is characterized by impaired alveolar and vascular development. Mesenchymal stromal cells (MSCs) have lung protective effects. Conversely, BPD is associated with increased MSCs in tracheal aspirates. We hypothesized that endogenous lung (L-)MSCs are perturbed in a well-established oxygen-induced rat model mimicking BPD features. Rat pups were exposed to 21% or 95% oxygen from birth to postnatal day 10. On day 12, CD146+ L-MSCs were isolated and characterized according to the International Society for Cellular Therapy criteria. Epithelial and vascular repair potential were tested by scratch assay and endothelial network formation, respectively, immune function by mixed lymphocyte reaction assay. Microarray analysis was performed using the Affymetrix GeneChip and gene set enrichment analysis software. CD146+ L-MSCs isolated from rat pups exposed to hyperoxia had decreased CD73 expression and inhibited lung endothelial network formation. CD146+ L-MSCs indiscriminately promoted epithelial wound healing and limited T cell proliferation. Expression of potent antiangiogenic genes of the axonal guidance cue and CDC42 pathways was increased after in vivo hyperoxia, whereas genes of the anti-inflammatory Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and lung/vascular growth-promoting fibroblast growth factor (FGF) pathways were decreased. In conclusion, in vivo hyperoxia exposure alters the proangiogenic effects and FGF expression of L-MSCs. In addition, decreased CD73 and JAK/STAT expression suggests decreased immune function. L-MSC function may be perturbed and contribute to BPD pathogenesis. These findings may lead to improvements in manufacturing exogenous MSCs with superior repair capabilities.
Assuntos
Displasia Broncopulmonar/metabolismo , Lesão Pulmonar/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigênio/efeitos adversos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/fisiopatologia , Antígeno CD146/genética , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Células-Tronco Mesenquimais/patologia , Oxigênio/administração & dosagem , Ratos , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
BACKGROUND AIMS: Bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted lung growth, is the most common complication in extreme premature infants. BPD leads to persistent pulmonary disease later in life. Alveolar epithelial type 2 cells (AEC2s), a subset of which represent distal lung progenitor cells (LPCs), promote normal lung growth and repair. AEC2 depletion may contribute to persistent lung injury in BPD. We hypothesized that induced pluripotent stem cell (iPSC)-derived AECs prevent lung damage in experimental oxygen-induced BPD. METHODS: Mouse AECs (mAECs), miPSCs/mouse embryonic stem sells, human umbilical cord mesenchymal stromal cells (hUCMSCs), human (h)iPSCs, hiPSC-derived LPCs and hiPSC-derived AECs were delivered intratracheally to hyperoxia-exposed newborn mice. Cells were pre-labeled with a red fluorescent dye for in vivo tracking. RESULTS: Airway delivery of primary mAECs and undifferentiated murine pluripotent cells prevented hyperoxia-induced impairment in lung function and alveolar growth in neonatal mice. Similar to hUCMSC therapy, undifferentiated hiPSCs also preserved lung function and alveolar growth in hyperoxia-exposed neonatal NOD/SCID mice. Long-term assessment of hiPSC administration revealed local teratoma formation and cellular infiltration in various organs. To develop a clinically relevant cell therapy, we used a highly efficient method to differentiate hiPSCs into a homogenous population of AEC2s. Airway delivery of hiPSC-derived AEC2s and hiPSC-derived LPCs, improved lung function and structure and resulted in long-term engraftment without evidence of tumor formation. CONCLUSIONS: hiPSC-derived AEC2 therapy appears effective and safe in this model and warrants further exploration as a therapeutic option for BPD and other lung diseases characterized by AEC injury.
Assuntos
Células Epiteliais Alveolares/citologia , Hiperóxia/complicações , Células-Tronco Pluripotentes Induzidas/citologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oxigênio , Teratoma/patologiaRESUMO
Sepsis is the main cause of morbidity and mortality in neonates. Mesenchymal stromal cells (MSCs) are potent immune-modulatory cells. Their effect in neonatal sepsis has never been explored. We hypothesized that human umbilical cord-derived MSCs (hUC-MSCs) improve survival in experimental neonatal sepsis. Sepsis was induced in 3-day-old rats by intravenous injection of Escherichia coli (5 × 105/rat). One hour after infection, rats were treated intravenously with normal saline, hUC-MSCs, or with interferon-γ preconditioned hUC-MSCs (107 cells/kg). Eighteen hours after infection, survival, bacterial counts, lung neutrophil and macrophage influx, phagocytosis and apoptosis of splenocytes plasma, and LL-37 concentration were evaluated. Animals were observed for survival for 72 h after E. coli injection. Treatment with either hUC-MSCs or preconditioned hUC-MSCs significantly increased survival (hUC-MSCs, 81%; preconditioned hUC-MSCs, 89%; saline, 51%; P < 0.05). Both hUC-MSCs and preconditioned hUC-MSCs enhanced bacterial clearance. Lung neutrophil influx was decreased with preconditioned hUC-MSCs. The number of activated macrophages (CD206+) in the spleen was increased with hUC-MSCs and preconditioned hUC-MSCs; preconditioned hUC-MSCs increased the phagocytic activity of CD206+ macrophages. hUC-MSCs and preconditioned hUC-MSCs decreased splenocyte apoptosis in E. coli infected rats. Finally, LL-37 plasma levels were elevated in neonatal rats treated with hUC-MSCs or preconditioned hUC-MSCs. hUC-MSCs enhance survival and bacterial clearance in experimental neonatal sepsis. hUC-MSCs may be an effective adjunct therapy to reduce neonatal sepsis-related morbidity and mortality.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sepse Neonatal/microbiologia , Sepse Neonatal/terapia , Cordão Umbilical/citologia , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/sangue , Escherichia coli/fisiologia , Humanos , Inflamação/patologia , Pulmão/patologia , Macrófagos/metabolismo , Sepse Neonatal/sangue , Neutrófilos/metabolismo , Fagocitose , Ratos , Baço/patologia , Análise de SobrevidaRESUMO
Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human lung diseases, providing newer insights into their pathophysiological mechanisms.
Assuntos
Técnicas de Cultura de Células/métodos , Células Endoteliais/fisiologia , Pulmão/citologia , Células-Tronco/fisiologia , Animais , Separação Celular/métodos , Células Cultivadas , Humanos , RatosRESUMO
BACKGROUND: Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. METHODS AND RESULTS: Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. CONCLUSIONS: Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.
Assuntos
Proliferação de Células/efeitos dos fármacos , Células Endoteliais/fisiologia , Oxigênio/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/cirurgia , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Células Endoteliais/transplante , Feto , Células Endoteliais da Veia Umbilical Humana/fisiologia , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Alvéolos Pulmonares/lesões , Ratos , Ratos Nus , Ratos Sprague-DawleyRESUMO
BACKGROUND: Genome-wide association studies suggest that plasma triacylglyceride (TAG) in humans was associated with variation in the PLA2G6 locus, a gene that encodes calcium-independent phospholipase A2 (iPLA2 ß). The objective of the present study is to understand the impact of genetic inactivation of iPLA2 ß on hepatic TAG metabolism in C57BL/6 mice. METHODS: Male iPLA2 ß (+) (/-) mice were backcrossed with female iPLA2 ß (-/-) mice for up to 10 generations prior to experiments. Lipid and lipoprotein metabolism from plasma, hepatocytes, thigh subcutaneous adipose and thigh skeletal muscle tissues of the mice were determined under various experimental conditions. RESULTS: The iPLA2 ß (-/-) mice, either male or female as compared with iPLA2 ß (+) (/) (+) littermates, showed no change in fasted or postprandial plasma TAG or total cholesterol at young (12-15 weeks) or old (40-44 weeks) ages under chow diet or high-fat diet (HFD) conditions. However, fractionation of plasma lipoproteins showed that under HFD conditions, there was a significant increase (by 40%) in apoB-100 association with VLDL1 fractions in iPLA2 ß (-/-) mice as compared with iPLA2 ß (+) (/) (+) littermates. There was no significant difference in triglyceride or cholesterol contents in the liver, muscle, or adipose tissue between iPLA2 ß (-/-) and iPLA2 ß (+/+) littermates. Metabolic labeling experiments with cultured primary hepatocytes isolated from iPLA2 ß (-/-) mice also showed 2-fold increase in the secretion of [(35)S]methionine-labeled apoB-100 in VLDL1 fractions as compared with that from iPLA2 ß (+) (/) (+) hepatocytes. Likewise, secretion of [(3)H]palmitate-labeled TAG from the iPLA2 ß (-/-) hepatocytes was increased by 2-fold. CONCLUSIONS: Although iPLA2 ß may play a role in TAG-rich VLDL1 production from cultured hepatocytes, there is no evidence that inactivation of iPLA2 ß would lead to dyslipidemia in mice in vivo.
RESUMO
Hepatic lipase (HL) plays a role in the catabolism of apolipoprotein (apo)B-containing lipoproteins through its lipolytic and ligand-binding properties. We describe a potential intracellular role of HL in the assembly and secretion of VLDL. Transient or stable expression of HL in McA-RH7777 cells resulted in decreased (by 40%) incorporation of [(3)H]glycerol into cell-associated and secreted triacylglycerol (TAG) relative to control cells. However, incorporation of [(35)S]methionine/cysteine into cell and medium apoB-100 was not decreased by HL expression. The decreased (3)H-TAG synthesis/secretion in HL expressing cells was not attributable to decreased expression of genes involved in lipogenesis. Fractionation of medium revealed that the decreased [(3)H]TAG from HL expressing cells was mainly attributable to decreased VLDL. Expression of catalytically-inactive HL (HL(SG)) (Ser-145 at the catalytic site was substituted with Gly) in the cells also resulted in decreased secretion of VLDL-[(3)H]TAG. Examination of lumenal contents of microsomes showed a 40% decrease in [(3)H]TAG associated with lumenal lipid droplets in HL or HL(SG) expressing cells as compared with control. The microsomal membrane-associated [(3)H]TAG was decreased by 50% in HL expressing cells but not in HL(SG) expressing cells. Thus, expression of HL, irrespective of its lipolytic function, impairs formation of VLDL precursor [(3)H]TAG in the form of lumenal lipid droplets. These results suggest that HL expression in McA-RH7777 cells result in secretion of [(3)H]TAG-poor VLDL.
Assuntos
Lipase/genética , Lipoproteínas VLDL/química , Lipoproteínas VLDL/metabolismo , Triglicerídeos , Substituição de Aminoácidos , Biocatálise , Linhagem Celular , Expressão Gênica , Humanos , Lipase/metabolismo , Lipogênese/genética , Lipoproteínas VLDL/biossíntese , TransfecçãoRESUMO
Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL(1). Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL(1) secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.
Assuntos
Apolipoproteína B-100/metabolismo , Apolipoproteína B-48/metabolismo , Apolipoproteína C-III/biossíntese , Proteínas de Transporte/metabolismo , VLDL-Colesterol/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteína C-III/genética , Linhagem Celular Tumoral , Dosagem de Genes , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/metabolismo , Ratos , TransfecçãoRESUMO
Cardiovascular diseases are often accompanied by elevated LDL particles and endothelial dysfunction. We have examined the possibility of concurrently reducing LDL levels and modulating endothelial function using a single helper-dependent adenovirus vector system to simultaneously express the apolipoprotein B mRNA editing enzyme (Apobec1) and the scavenger receptor, class B, type I (SR-BI) genes under the control of separate promoters (designated HD-C2). Apobec1 edits apoB mRNA at nucleotide C-6666 to produce truncated apoB48 and is normally expressed in small intestine only. SR-BI is a receptor for multiple ligands with distinct tissue-specific functions. Expression of Apobec1 in HepG2 cells resulted in apoB mRNA editing, leading to decreased apoB100 abundance (to 6% of control) and the appearance of apoB48. Editing of apoB mRNA in HepG2 cells resulted in decline in apoB mRNA levels of 50%. This was probably the result of nonsense-mediated decay of edited message, since over-expression of Apobec1 increased neither Apobec1 complementary factor (ACF) mRNA nor protein abundance. Over-expression of SR-BI in human endothelial cells activated endothelial nitric oxide synthase (eNOS) activity by phosphorylation of eNOS at residue Ser-1177 in the presence of HDL, leading to increased production of the anti-atherogenic molecule nitric oxide (NO). Taken together, this study demonstrates that using one vector delivery system to express two genes in two different cell types results in the cell-specific beneficial effects of decreasing apoB100 production and increasing eNOS activities. This combined gene expression approach may provide an improved therapeutic strategy by targeting multiple sites in the mechanism of cardiovascular injury.
Assuntos
Apolipoproteínas B/genética , Aterosclerose/metabolismo , Citidina Desaminase/genética , Expressão Gênica , Terapia Genética , RNA Mensageiro/genética , Receptores Depuradores Classe B/genética , Desaminase APOBEC-1 , Adenoviridae/genética , Animais , Aterosclerose/genética , Aterosclerose/terapia , Western Blotting , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Citometria de Fluxo , Vetores Genéticos , Humanos , Técnicas In Vitro , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismoRESUMO
BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.