Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2794, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493973

RESUMO

All known riboswitches use their aptamer to senese one metabolite signal and their expression platform to regulate gene expression. Here, we characterize a SAM-I riboswitch (SAM-IXcc) from the Xanthomonas campestris that regulates methionine synthesis via the met operon. In vitro and in vivo experiments show that SAM-IXcc controls the met operon primarily at the translational level in response to cellular S-adenosylmethionine (SAM) levels. Biochemical and genetic data demonstrate that SAM-IXcc expression platform not only can repress gene expression in response to SAM binding to SAM-IXcc aptamer but also can sense and bind uncharged initiator Met tRNA, resulting in the sequestering of the anti-Shine-Dalgarno (SD) sequence and freeing the SD for translation initiation. These findings identify a SAM-I riboswitch with a dual functioning expression platform that regulates methionine synthesis through a previously unrecognized mechanism and discover a natural tRNA-sensing RNA element. This SAM-I riboswitch appears to be highly conserved in Xanthomonas species.


Assuntos
RNA de Transferência de Metionina/metabolismo , Riboswitch , S-Adenosilmetionina/metabolismo , Sequência de Bases , Loci Gênicos , Modelos Biológicos , Conformação de Ácido Nucleico , Óperon/genética , Biossíntese de Proteínas , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética
2.
Brain Res ; 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19401170

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising source for cell-based treatment of brain injury, but the therapy of BMSCs is restricted by low cell survival. We examined whether nerve growth factor (NGF) improve BMSCs viability in the brain with Fimbria-Fornix lesion (FF). After transduction of NGF gene via recombinant retroviral vectors, the rat BMSCs were transformed into the NGF-GFP positive BMSCs, nearly 100% of cells expressed NGF. After transplanted into basal forebrain of rat with FF, the NGF-GFP positive BMSCs expressed the exogenous NGF gene in the host brain, and interesting, the survival number of BMSCs in the NGF group was significant more than that of the void plasmid group. Furthermore, the number of choline acetyltransferase (ChAT) immunoreactive neurons of NGF group was also significant higher than those of the void plasmid group (p<0.05) or the PBS group (p<0.01). Performance in the water maze test was improved in these rats in NGF group. These results indicate that NGF increased BMSCs survival in brain with FF, which results in better improvement of brain function than injected with BMSCs alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA