Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 534: 29-40, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832908

RESUMO

Neuropathic pain is a debilitating chronic pain condition and is refractory to the currently available treatments. Emerging evidence suggests that melatonin exerts analgesic effects in rodent models of neuropathic pain. Nevertheless, the exact underlying mechanisms of the analgesic effects of melatonin on neuropathic pain are largely unknown. Here, we observed that spinal nerve ligation (SNL) in rats L5 and L6 induced an obvious decrease in the 50% paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), indicating the induction of mechanical allodynia and the hyperalgesia, and melatonin prevented the genesis and maintenance of mechanical allodynia and the hyperalgesia. Notably, the inhibitory action of melatonin on SNL-induced mechanical allodynia and heat hypersensitivity was inhibited by a SIRT1 inhibitor (EX527). Melatonin treatment increased the expression of neuronal sirtuin1 (SIRT1) in DRGs following nerve injury. Furthermore, melatonin treatment restored the injury-dependent decrease in mitochondrial membrane potential and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and reduced the injury-dependent increase in hydrogen peroxide and 8-hydroxy-2-deoxyguanosine (8-OHdG), which was inhibited by EX527. In addition, we found that EX527 impeded the inhibitory effects of melatonin on the SNL-induced increased expression of cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). In conclusion, the above data demonstrated that melatonin alleviated mechanical allodynia and hyperalgesia induced by peripheral nerve injury via SIRT1 activation. Melatonin resolved mitochondrial dysfunction-oxidative stress-dependent and neuroinflammation mechanisms that were driven by SIRT1 after nerve injury.


Assuntos
Melatonina , Neuralgia , Ratos , Animais , Hiperalgesia/metabolismo , Sirtuína 1/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Nervos Espinhais/lesões , Mitocôndrias/metabolismo , Analgésicos
2.
Pain ; 162(2): 490-502, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868747

RESUMO

ABSTRACT: Mechanical allodynia is a debilitating condition for millions of patients with chronic pain. Mechanical allodynia can manifest in distinct forms, including brush-evoked dynamic and filament-evoked static allodynia. In the nervous system, the forkhead protein Foxo1 plays a critical role in neuronal structures and functions. However, the role of Foxo1 in the somatosensory signal remains unclear. Here, we found that Foxo1 selectively regulated static mechanical pain. Foxo1 knockdown decreased sensitivity to static mechanical stimuli in normal rats and attenuated static mechanical allodynia in rat models for neuropathic, inflammatory, and chemotherapy pain. Conversely, Foxo1 overexpression selectively enhanced sensitivity to static mechanical stimuli and provoked static mechanical allodynia. Furthermore, Foxo1 interacted with voltage-gated sodium Nav1.7 channels and increased the Nav1.7 current density by accelerating activation rather than by changing the expression of Nav1.7 in dorsal root ganglia neurons. In addition, the serum level of Foxo1 was found to be increased in chronic pain patients and to be positively correlated with the severity of chronic pain. Altogether, our findings suggest that serum Foxo1 level could be used as a biological marker for prediction and diagnosis of chronic pain. Moreover, selective blockade of Foxo1/Nav1.7 interaction may offer a new therapeutic approach in patients with mechanical pain.


Assuntos
Dor , Canais de Sódio Disparados por Voltagem , Animais , Proteína Forkhead Box O1/genética , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Neurochem Int ; 128: 106-114, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31018150

RESUMO

It has been reported that skin/muscle incision and retraction (SMIR) in the thigh, produces mechanical allodynia in the hind paw, far from the site of incision/retraction. The mechanical allodynia lasts about 22 days, indicating chronic post-operative pain develops. The precise mechanisms, however, are largely unclear. In the current study, we further found that SMIR surgery induced LTP of c-fiber evoked field potentials that lasted at least 4 h. The mRNA and protein level of tumor necrosis factor-alpha (TNFα) and acetylated nuclear factor-kappaB p65 (ac-NF-κB p65) in the lumbar spinal dorsal horn was gradually increased during LTP development, while pretreatment with either TNFα neutralization antibody or NF-κB inhibitor PDTC completely prevented the induction of LTP. Moreover, the expression of Silent information regulator 1 (SIRT1) in the lumbar spinal dorsal horn was decreased and activation of SIRT1 by SRT1720 also prevented the induction of LTP. Importantly, the spinal expression of Liver X receptors (LXRs) was increased, both at mRNA and protein level following SMIR. Application of LXRs agonist T0901317 to the spinal dorsal horn prevented LTP induction following SMIR. Mechanistically, T0901317 enhanced the expression of SIRT1 and decreased the expression of ac-NF-κB p65 and TNFα. Spinal application of SIRT1 antagonist EX-527, 30 min before T0901317 administration, completely blocked the inhibiting effect of T0901317 on LTP, and on expression of ac-NF-κB p65 and TNFα. These results indicated that activation of LXRs prevented SMIR-induced LTP by inhibiting NF-κB/TNFα pathway via increasing SIRT1 expression.


Assuntos
Receptores X do Fígado/metabolismo , Potenciação de Longa Duração/fisiologia , NF-kappa B/biossíntese , Células do Corno Posterior/metabolismo , Sirtuína 1/biossíntese , Ferida Cirúrgica/metabolismo , Animais , Carbazóis/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/agonistas , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/cirurgia , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sirtuína 1/antagonistas & inibidores , Pele/metabolismo , Sulfonamidas/farmacologia
4.
J Neurochem ; 149(6): 760-780, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30570747

RESUMO

Chronic postsurgical pain (CPSP) remains a medical problem. Whether the descending modulation of nociceptive transmission from the rostral ventromedial medulla (RVM) plays a role in CPSP induced by skin/muscle incision and retraction (SMIR) in the thigh is still unknown. In this study, we found that SMIR surgery, which induced either bilateral or unilateral mechanical allodynia, activated microglia, and up-regulated interleukin-1ß (IL-1ß), an important cytokine, and 8-hydroxyguanine, an oxidative stress marker in the RVM. In addition, the release of 5-hydroxytryptamine (5-HT) was increased in the ipsilateral and contralateral RVM in rats with either bilateral or unilateral pain following SMIR. The 5-HT level increase, 5-HT3 receptor (5-HT3R) up-regulation, and microglia activation were found bilaterally in SMIR rats with bilateral pain, but only ipsilaterally in SMIR rats with unilateral pain. The intrathecal injection of the 5-HT3R antagonist Y25130 prevented the development of CPSP and the activation of spinal microglia induced by SMIR. Furthermore, P2X7 receptor (P2X7R) was up-regulated in microglia in the RVM. The microinjection of the P2X7R antagonist brilliant blue G (BBG, a non-competitive P2X7R antagonist) into the RVM prevented the development of mechanical allodynia, inhibited the activation of microglia, and decreased the expression of IL-1ß and 8-hydroxyguanine in the RVM following SMIR. Importantly, BBG injected into the RVM also decreased the activation of microglia and the level of 5-HT in the lumbar 3 (L3) spinal cord. The microinjection of the P2X7R agonist BzATP, the NADPH oxidase activator phorbol-12-myristate-13-acetate, or IL-1ß into the RVM induced bilateral mechanical allodynia, microglia activation, and 5-HT release in the L3 spinal dorsal horn. Taken together, P2X7R activation in microglia in the RVM following SMIR might be responsible for the development of CPSP via activating descending serotonergic pathway. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Bulbo/metabolismo , Microglia/metabolismo , Vias Neurais/metabolismo , Dor Pós-Operatória/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
5.
Mol Pain ; 13: 1744806917733637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28952414

RESUMO

Background Lumbar disc herniation is a major cause of radicular pain, but the underlying mechanisms remain largely unknown. Spinal activation of src-family kinases are involved in the development of chronic pain from nerve injury, inflammation, and cancer. In the present study, the role of src-family kinases activation in lumbar disc herniation-induced radicular pain was investigated. Results Lumbar disc herniation was induced by implantation of autologous nucleus pulposus, harvest from tail, in lumbar 4/5 spinal nerve roots of rat. Behavior test and electrophysiologic data showed that nucleus pulposus implantation induced persistent mechanical allodynia and thermal hyperalgesia and increased efficiency of synaptic transmission in spinal dorsal horn which underlies central sensitization of pain sensation. Western blotting and immunohistochemistry staining revealed that the expression of phosphorylated src-family kinases was upregulated mainly in spinal microglia of rats with nucleus pulposus. Intrathecal delivery of src-family kinases inhibitor PP2 alleviated pain behaviors, decreased efficiency of spinal synaptic transmission, and reduced phosphorylated src-family kinases expression. Furthermore, we found that the expression of ionized calcium-binding adapter molecule 1 (marker of microglia), tumor necrosis factor-α, interleukin 1 -ß in spinal dorsal horn was increased in rats with nucleus pulposus. Therapeutic effect of PP2 may be related to its capacity in reducing the expression of these factors. Conclusions These findings suggested that central sensitization was involved in radicular pain from lumbar disc herniation; src-family kinases-mediated inflammatory response may be responsible for central sensitization and chronic pain after lumbar disc herniation.


Assuntos
Dor Crônica/complicações , Dor Crônica/enzimologia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/enzimologia , Vértebras Lombares/patologia , Microglia/enzimologia , Quinases da Família src/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal , Dor Crônica/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Hiperalgesia/complicações , Hiperalgesia/patologia , Interleucina-1beta/metabolismo , Deslocamento do Disco Intervertebral/fisiopatologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiopatologia , Masculino , Microglia/efeitos dos fármacos , Núcleo Pulposo/transplante , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Anesthesiology ; 127(3): 534-547, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28617705

RESUMO

BACKGROUND: Liver X receptors, including α and ß isoforms, are ligand-activated transcription factors. Whether liver X receptor α plays a role in neuropathic pain is unknown. METHODS: A spared nerve injury model was established in adult male rats and mice. Von Frey tests were performed to evaluate the neuropathic pain behavior; Western blot and immunohistochemistry were performed to understand the underlying mechanisms. RESULTS: Intrathecal injection of a specific liver X receptor agonist T0901317 or GW3965 could either prevent the development of mechanical allodynia or alleviate the established mechanical allodynia, both in rats and wild-type mice. GW3965 could inhibit the activation of glial cells and the expression of tumor necrosis factor-α (mean ± SD: 196 ± 48 vs. 119 ± 57; n = 6; P < 0.01) and interleukin 1ß (mean ± SD: 215 ± 69 vs. 158 ± 74; n = 6; P < 0.01) and increase the expression of interleukin 10 in the spinal dorsal horn. All of the above effects of GW3965 could be abolished by liver X receptor α mutation. Moreover, more glial cells were activated, and more interleukin 1ß was released in the spinal dorsal horn in liver X receptor α knockout mice than in wild-type mice after spared nerve injury. Aminoglutethimide, a neurosteroid synthesis inhibitor, blocked the inhibitory effect of T0901317 on mechanical allodynia, on the activation of glial cells, and on the expression of cytokines. CONCLUSIONS: Activation of liver X receptor α inhibits mechanical allodynia by inhibiting the activation of glial cells and rebalancing cytokines in the spinal dorsal horn via neurosteroids.


Assuntos
Hiperalgesia/prevenção & controle , Inflamação/prevenção & controle , Receptores X do Fígado/metabolismo , Neuralgia/prevenção & controle , Corno Dorsal da Medula Espinal/fisiopatologia , Animais , Western Blotting , Citocinas , Modelos Animais de Doenças , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27306413

RESUMO

BACKGROUND: Vincristine, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and there are currently no effective drugs to prevent or treat this side effect. Previous studies have shown that methylcobalamin has potential analgesic effect in diabetic and chronic compression of dorsal root ganglion model; however, whether methylcobalamin has effect on vincristine-induced painful peripheral neuropathy is still unknown. RESULTS: We found that vincristine-induced mechanical allodynia and thermal hyperalgesia, accompanied by a significant loss of intraepidermal nerve fibers in the plantar hind paw skin and an increase in the incidence of atypical mitochondria in the sciatic nerve. Moreover, in the spinal dorsal horn, the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the protein expression of p-p65 as well as tumor necrosis factor a was increased, whereas the protein expression of IL-10 was decreased following vincristine treatment. Furthermore, intraperitoneal injection of methylcobalamin could dose dependently attenuate vincristine-induced mechanical allodynia and thermal hyperalgesia, which was associated with intraepidermal nerve fibers rescue, and atypical mitochondria prevalence decrease in the sciatic nerve. Moreover, methylcobalamin inhibited the activation of NADPH oxidase and the downstream NF-kB pathway. Production of tumor necrosis factor a was also decreased and production of IL-10 was increased in the spinal dorsal horn following methylcobalamin treatment. Intrathecal injection of Phorbol-12-Myristate-13-Acetate, a NADPH oxidase activator, could completely block the analgesic effect of methylcobalamin. CONCLUSIONS: Methylcobalamin attenuated vincrinstine-induced neuropathic pain, which was accompanied by inhibition of intraepidermal nerve fibers loss and mitochondria impairment. Inhibiting the activation of NADPH oxidase and the downstream NF-kB pathway, resulting in the rebalancing of proinflammatory and anti-inflammatory cytokines in the spinal dorsal horn might also be involved. These findings might provide potential target for preventing vincristine-induced neuropathic pain.


Assuntos
Citocinas/metabolismo , Fibras Nervosas/patologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Nervo Isquiático/patologia , Corno Dorsal da Medula Espinal/metabolismo , Vincristina/efeitos adversos , Vitamina B 12/análogos & derivados , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Ativação Enzimática/efeitos dos fármacos , Hiperalgesia/complicações , Hiperalgesia/patologia , Interleucina-10/biossíntese , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Fibras Nervosas/ultraestrutura , Neuralgia/complicações , Ésteres de Forbol/farmacologia , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/biossíntese , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA