Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 296: 105107, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325729

RESUMO

To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.


Assuntos
Resistência à Insulina , Neoplasias , Bovinos , Animais , Baço , Fluordesoxiglucose F18 , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Insaturados , Linfonodos , Glicerofosfolipídeos , Colina
2.
Animals (Basel) ; 13(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003055

RESUMO

Fermented distillers' grains (FDG) are commonly used to enhance the health and metabolic processes of livestock and poultry by regulating the composition and activity of the intestinal microbiota. Nevertheless, there is a scarcity of research on the effects of the FDG diet on the gastrointestinal microbiota and its metabolites in cattle. This study examines the impact of FDG dietary supplements on the gastrointestinal flora and metabolic profile of Guanling cattle. Eighteen cattle were randomly assigned to three treatment groups with six replicates per group. The treatments included a basal diet (BD), a 15% concentrate replaced by FDG (15% FDG) in the basal diet, and a 30% concentrate replaced by FDG (30% FDG) in the basal diet. Each group was fed for a duration of 60 days. At the conclusion of the experimental period, three cattle were randomly chosen from each group for slaughter and the microbial community structure and metabolic mapping of their abomasal and cecal contents were analyzed, utilizing 16S rDNA sequencing and LC-MS technology, respectively. At the phylum level, there was a significant increase in Bacteroidetes in both the abomasum and cecum for the 30%FDG group (p < 0.05). Additionally, there was a significant reduction in potential pathogenic bacteria such as Spirochetes and Proteobacteria for both the 15%FDG and 30%FDG groups (p < 0.05). At the genus level, there was a significant increase (p < 0.05) in Ruminococcaceae_UCG-010, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 fiber degradation bacteria. Non-target metabolomics analysis indicated that the FDG diet significantly impacted primary bile acid biosynthesis, bile secretion, choline metabolism in cancer, and other metabolic pathways (p < 0.05). There is a noteworthy correlation between the diverse bacterial genera and metabolites found in the abomasal and cecal contents of Guanling cattle, as demonstrated by correlation analysis. In conclusion, our findings suggest that partially substituting FDG for conventional feed leads to beneficial effects on both the structure of the gastrointestinal microbial community and the metabolism of its contents in Guanling cattle. These findings offer a scientific point of reference for the further use of FDG as a cattle feed resource.

3.
Front Microbiol ; 14: 1171563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789852

RESUMO

Dried distillers' grains with solubles (DDGS) are rich in nutrients, and partially alternative feeding of DDGS effectively reduces cost of feed and improves animals' growth. We used 16S rDNA gene sequencing and LC/MS-based metabolomics to explore the effect of feeding cattle with a basal diet (BD) and a Jiang-flavor DDGS diet (replaces 25% concentrate of the diet) on microbiome and metabolome of ruminal and cecal contents in Guanling yellow cattle. The results showed that the ruminal and cecal contents shared the same dominance of Bacteroidetes, Firmicutes and Proteobacteria in two groups. The ruminal dominant genera were Prevotella_1, Rikenellaceae_RC9_gut_group, and Ruminococcaceae_UCG-010; and the cecal dominant genera were Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-010, and Rikenellaceae_RC9_gut_group. Linear discriminant analysis effect size analysis (LDA > 2, P < 0.05) revealed the significantly differential bacteria enriched in the DDGS group, including Ruminococcaceae_UCG_012, Prevotellaceae_UCG_004 and Anaerococcus in the ruminal contents, which was associated with degradation of plant polysaccharides. Besides, Anaerosporobacter, Anaerovibrio, and Caproiciproducens in the cecal contents were involved in fatty acid metabolism. Compared with the BD group, 20 significantly different metabolites obtained in the ruminal contents of DDGS group were down-regulated (P < 0.05), and based on them, 4 significantly different metabolic pathways (P < 0.05) were enriched including "Linoleic acid metabolism," "Biosynthesis of unsaturated fatty acids," "Taste transduction," and "Carbohydrate digestion and absorption." There were 65 significantly different metabolites (47 were upregulated, 18 were downregulated) in the cecal contents of DDGS group when compared with the BD group, and 4 significantly different metabolic pathways (P < 0.05) were enriched including "Longevity regulating pathway," "Bile secretion," "Choline metabolism in cancer," and "HIF-1 signaling pathway." Spearman analysis revealed close negative relationships between the top 20 significantly differential metabolites and Anaerococcus in the ruminal contents. Bacteria with high relevance to cecal differential metabolites were Erysipelotrichaceae_UCG-003, Dielma, and Solobacterium that affect specific metabolic pathways in cattle. Collectively, our results suggest that feeding cattle with a DDGS diet improves the microbial structure and the metabolic patterns of lipids and carbohydrates, thus contributing to the utilization efficiency of nutrients and physical health to some extent. Our findings will provide scientific reference for the utilization of DDGS as feed in cattle industry.

4.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445854

RESUMO

Dried distiller's grains with solubles (DDGS) are rich in nutrients and can enhance animals' growth and immunity. However, there are few reports on the effects of a diet of DDGS on plasma metabolism and the related action pathways in domestic animals. In this study, groups of Guanling yellow cattle (GY) and Guanling crossbred cattle (GC) having a basal diet served as the control groups (GY-CG and GC-CG), and DDGS replacing 25% of the diet of GY and GC served as the replacement groups (GY-RG and GC-RG), with three cattle in each group. Plasma samples were prepared for metabolomic analysis. Based on multivariate statistical and univariate analyses, differential metabolites and metabolic pathways were explored. Twenty-nine significantly different metabolites (p < 0.05) were screened in GY-RG compared with those in GY-CG and were found to be enriched in the metabolic pathways, including choline metabolism in cancer, linolenic acid metabolism, and amino acid metabolism. Nine metabolites showed significant differences (p < 0.05) between GC-RG and GC-CG and were mainly distributed in the metabolic pathways of choline metabolism in cancer, glycerophospholipid metabolism, prostate cancer metabolism, and gonadotropin-releasing hormone (GnRH) secretion. These results suggest that a DDGS diet may promote healthy growth and development of experimental cattle by modulating these metabolic pathways. Our findings not only shed light on the nutritional effects of the DDGS diet and its underlying mechanisms related to metabolism but also provide scientific reference for the feed utilization of DDGS.


Assuntos
Ração Animal , Melhoramento Vegetal , Masculino , Bovinos , Animais , Ração Animal/análise , Dieta/veterinária , Animais Domésticos , Colina , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Grão Comestível/química
5.
Microbes Infect ; 20(4): 254-260, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432801

RESUMO

Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Although there is a large diversity of clinical signs and symptoms, a severe inflammatory response is common to all leptospirosis patients. The mechanism of IL-1ß secretion during Leptospira infection has been previously studied in mouse macrophages. However, the outcome of Leptospira infection is very different in human and murine macrophages, and the mechanisms responsible for IL-1ß secretion in human macrophages had not been investigated. This study therefore examines the effects of Leptospira interrogans infection on inflammasome activation and proinflammatory cytokine expression in human macrophages. Increased mRNA and protein expression of NLRP3 was observed by real time RT-PCR and flow cytometry at 1 h after co-cultivation. Enzyme-linked immunosorbent assay (ELISA) determination showed that IL-1ß and IL-18 are released in the culture supernatants at 1 h after cultivation. The inhibition assay showed that glybenclamide (a K+ efflux inhibitor that blocks NLRP3 inflammasome activation) and N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) and NLRP3 depletion with siRNAs reduced the levels of IL-1ß and IL-18 release. Moreover, the levels of IL-1ß and IL-18 production decreased in CA-074 (a cathepsin B inhibitor) and NAC (an anti-oxidant) pretreated human macrophages, compared to untreated controls. This study suggests that L. interrogans infection leads to reactive oxygen species (ROS)- and cathepsin B-dependent NLRP3 inflammasome activation, which subsequently mediates caspase-1 activation and IL-1ß and IL-18 release.


Assuntos
Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Leptospira interrogans/metabolismo , Leptospirose/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Catepsina B/antagonistas & inibidores , Humanos , Inflamassomos/antagonistas & inibidores , Macrófagos/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interferência de RNA , Espécies Reativas de Oxigênio/antagonistas & inibidores , Células THP-1 , Regulação para Cima/genética
6.
PLoS One ; 12(6): e0178618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575082

RESUMO

BACKGROUND: Pathogenic species of Leptospira cause leptospirosis, a global zoonotic disease. Our previous work showed that leptospires survive and replicate in human macrophages but are killed in murine macrophages. However, the mechanism responsible for the different intracellular fates of leptospires within the macrophages of different hosts remains unclear. RESULTS: The present study demonstrates that infection with Leptospira interrogans caused significant up-regulation of reactive oxygen species (ROS) and superoxide in J774A.1 cells but did so to a lesser extent in THP-1 cells. The up-regulation of ROS and superoxide was significantly inhibited by the NADPH oxidase inhibitor apocynin. The damaged leptospires and remnants of leptospires within membrane-bound vacuoles were significantly inhibited by apocynin in J774A.1 cells but were less inhibited in THP-1 cells. In addition, apocynin significantly prevented damage to leptospires and the co-localization of L. interrogans with lysosomes in J774A.1 cells but did so to a lesser extent in THP-1 cells. Furthermore, the relative fluorescence intensity levels of intracellular leptospires and the viability of the intracellular leptospires increased in apocynin pretreated J774A.1 and THP-1 cells after 2 h of infection. CONCLUSIONS: The present study, based on our previous findings, further demonstrated that ROS contributed substantially to the bactericidal ability of mouse macrophages to kill intracellular leptospires. However, ROS did not contribute as much in human macrophages, which partially explains the different intracellular fates of L. interrogans in human and mouse macrophages.


Assuntos
Leptospira interrogans/fisiologia , Macrófagos/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA