Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 255(Pt 1): 113194, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520902

RESUMO

Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might adversely influence the health of experimental animals and humans. It has been known that Cd might accumulate in vertebrates for many years and thus leads to the hepatic and renal toxicity. Additionally, Cd concentration in the ovary increases with age and is highly related to the reproductive hazard. However, the underlying mechanisms regarding how Cd affects the female reproductive system especially the oocyte quality have not yet fully defined. Here, we reported that Cd exposure led to the defective nuclear maturation of oocytes via the impairment of cytoskeleton assembly, displaying the aberrant spindle organization, chromosome alignment and actin polymerization. In the meantime, Cd exposure caused the impaired cytoplasmic maturation by showing the disrupted dynamics of mitochondrial integrity and cortical granules, and thereby resulting in the compromised sperm binding ability and fertilization capacity of oocytes. More importantly, we found that glutathione (GSH) supplementation was able to recover the meiotic failure induced by Cd exposure through suppressing the excessive ROS level, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate that Cd exposure has the adverse effects on the oocyte meiotic maturation as well as subsequent fertilization, and provide a potential effective strategy to improve the quality of Cd-exposed oocytes.


Assuntos
Cádmio/toxicidade , Mitocôndrias/patologia , Oócitos/citologia , Oogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Citoesqueleto/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Masculino , Meiose/efeitos dos fármacos , Oócitos/patologia , Suínos
2.
Mol Hum Reprod ; 25(10): 601-613, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31393565

RESUMO

CBP (carboplatin) is a second-generation chemotherapeutic drug of platinum compound commonly applied in the treatment of sarcomas and germ cell tumours. Although it is developed to replace cisplatin, which has been proven to have a variety of side effects during cancer treatment, CBP still exhibits a certain degree of toxicity including neurotoxicity, nephrotoxicity, hematotoxicity and myelosuppression. However, the underlying mechanisms regarding how CBP influences the female reproductive system especially oocyte quality have not yet been fully determined. Here, we report that CBP exposure led to the oocyte meiotic defects by impairing the dynamics of the meiotic apparatus, leading to a remarkably aberrant spindle organisation, actin polymerisation and mitochondrial integrity. Additionally, CBP exposure caused compromised sperm binding and fertilisation potential of oocytes by due to an abnormal distribution of cortical granules and its component ovastacin. More importantly, we demonstrated that vitamin C supplementation prevented meiotic failure induced by CBP exposure and inhibited the increase in ROS levels, DNA damage accumulation and apoptotic incidence. Taken together, our findings demonstrate the toxic effects of CBP exposure on oocyte development and provide a potential effective way to improve the quality of CBP-exposed oocytes in vitro.


Assuntos
Ácido Ascórbico/farmacologia , Carboplatina/efeitos adversos , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Células Cultivadas , Citoproteção/efeitos dos fármacos , Feminino , Fertilização/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Suínos
3.
Aging (Albany NY) ; 11(13): 4706-4719, 2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31301169

RESUMO

DDP (cisplatin), a DNA cross-linking agent, is one of the most common chemotherapeutic drugs that have been widely used in the treatment of sarcomas and germ cell tumors. DDP treatment exhibits severe side effects including renal toxicity, ototoxicity and embryo-toxicity. Women of reproductive age treated with DDP may lead to loss of primordial follicles, resulting in the depletion of the ovarian reserve and consequent premature ovarian failure. However, the influence of DDP on the oocyte quality and the strategy to prevent it has not yet fully clarified. Here, we report that DDP exposure resulted in the oocyte meiotic failure via disrupting the meiotic organelle dynamics and arrangement, exhibiting a prominently impaired cytoskeleton assembly, including spindle formation and actin polymerization. In addition, exposure to DDP led to the abnormal distribution of mitochondrion and cortical granules, two indicators of cytoplasmic maturation of oocytes. Conversely, TP (tea polyphenols) supplementation partially restored all of the meiotic defects resulted from DDP exposure through suppressing the increase of ROS level and the occurrence of DNA damage as well as apoptosis.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Oócitos/efeitos dos fármacos , Polifenóis/farmacologia , Chá/química , Animais , Apoptose/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Meiose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Suínos
4.
FASEB J ; 32(1): 342-352, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904021

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 µm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.


Assuntos
Benzo(a)pireno/toxicidade , Fertilização/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Oócitos/efeitos dos fármacos , Oócitos/patologia , Aneugênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Infertilidade Feminina/patologia , Cinetocoros/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos
5.
Hum Reprod ; 33(1): 116-127, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112712

RESUMO

STUDY QUESTION: Does melatonin restore the benzo(a)pyrene (BaP)-induced meiotic failure in porcine oocytes? SUMMARY ANSWER: Melatonin effectively inhibits the increased reactive oxygen species (ROS) level and apoptotic rate in BaP-exposed porcine oocytes to recover the meiotic failure. WHAT IS KNOWN ALREADY: BaP, a widespread environmental carcinogen found in particulate matter, 2.5 µm or less (PM2.5), has been shown to have toxicity at the level of the reproductive systems. BaP exposure disrupts the steroid balance, alters the expression of ovarian estrogen receptor and causes premature ovarian failure through the rapid depletion of the primordial follicle pool. In addition, acute exposure to BaP has transient adverse effects on the follicle growth, ovulation and formation of corpora lutea, which results in transient infertility. STUDY DESIGN, SIZE, DURATION: Porcine oocytes were randomly assigned to control, BaP-exposed and melatonin-supplemented groups. BaP was dissolved in dimethylsulphoxide and diluted to a final concentration of 50, 100 or 250 µM with maturation medium, respectively. Melatonin was dissolved in the absolute ethanol and diluted with maturation medium to a final concentration of 1 nM, 100 nM, 10 µM and 1 mM, respectively. The in vitro cultured oocytes from each group after treatment were applied to the subsequent analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Acquisition of oocyte meiotic competence was assessed using immunostaining, fluorescent intensity quantification and/or immunoblotting to analyse the cytoskeleton assembly, mitochondrial integrity, cortical granule dynamics, ovastacin distribution, ROS level and apoptotic rate. Fertilization ability of oocytes was examined by sperm binding assay and IVF. MAIN RESULTS AND THE ROLE OF CHANCE: BaP exposure resulted in the oocyte meiotic failure (P = 0.001) via impairing the meiotic apparatus, showing a prominently defective spindle assembly (P = 0.003), actin dynamics (P < 0.001) and mitochondrion integrity (P < 0.001). In addition, BaP exposure caused the abnormal distribution of cortical granules (P < 0.001) and ovastacin (P = 0.003), which were consistent with the observation that fewer sperm bound to the zona pellucida surrounding the unfertilized BaP-exposed eggs (P < 0.001), contributing to the fertilization failure (P < 0.001). Conversely, melatonin supplementation recovered, at least partially, all the meiotic defects caused by BaP exposure through inhibiting the rise in ROS level (P = 0.015) and apoptotic rate (P = 0.001). LIMITATIONS, REASONS FOR CAUTION: We investigated the negative impact of BaP on the oocyte meiotic maturation in vitro, but not in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Our findings not only deeply clarify the potential mechanisms of BaP-induced oocyte meiotic failure, but also extend the understanding about how environmental pollutants influence the reproductive systems in humans. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Natural Science Foundation of China (31571545) and the Natural Science Foundation of Jiangsu Province (BK20150677). The authors have no conflict of interest to disclose.


Assuntos
Benzo(a)pireno/toxicidade , Meiose/efeitos dos fármacos , Melatonina/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , China , Feminino , Fertilização/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Mitocôndrias/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Sus scrofa
6.
Cell Cycle ; 16(21): 2139-2145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933593

RESUMO

Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.


Assuntos
Citoesqueleto/metabolismo , Dineínas/metabolismo , Oócitos/metabolismo , Animais , Centrossomo/metabolismo , Cromossomos/metabolismo , Células do Cúmulo/metabolismo , Meiose/fisiologia , Oogênese/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA