RESUMO
BACKGROUND: Protein kinase C delta (PRKCD) and caspase recruitment domain family member 9 (CARD9) are genes involved in B and T cell activation, and cytokine production, which are vital mechanisms underlying autoimmune disease development. This study aimed to explore the association of the PRKCD and CARD9 genes with Vogt-Koyanagi-Harada disease (VKH) disease. The case-control study was performed to in 912 patients with VKH and 878 normal controls. MassARRAY system, SHEsis online platform, real-time PCR, and enzyme-linked immunosorbent assay were used to detect genotyping, haplotyping, mRNA expression, and cytokine levels, respectively. RESULTS: We found that rs74437127 C allele of PRKCD, rs3812555 CC genotype, and C allele of CARD9 were associated with increased susceptibility of VKH (Pc = 0.020, OR = 1.624; Pc = 2.04 × 10-5, OR = 1.810; Pc = 2.76 × 10-5, OR = 1.698, respectively). However, the rs74437127 T allele, and rs3812555 TC genotype and T allele were linked with decreased susceptibility to VKH (Pc = 0.020, OR = 0.616; Pc = 7.85 × 10-5, OR = 0.559; Pc = 2.76 × 10-5, OR = 0.589, respectively). PRKCD ATG and CARD9 GCTTA haplotypes decreased susceptibility to VKH (Pc = 3.11 × 10-3, OR = 0.594; Pc = 5.00 × 10-3, OR = 0.639, respectively). Functional studies on rs3812555 genotyped individuals revealed that CC carriers had significantly higher CARD9 mRNA expression and tumour necrosis factor-α production than TC/TT carriers (P = 1.00 × 10-4; P = 2.00 × 10-3, respectively). CONCLUSIONS: We found an association between PRKCD rs74437127 and CARD9 rs3812555 polymorphisms and VKH susceptibility and revealed that the increased susceptibility of rs3812555 for VKH may be mediated by regulating CARD9 gene expression and the production of pro-inflammatory cytokines, such as TNF-α.
Assuntos
Proteína Quinase C-delta , Síndrome Uveomeningoencefálica , Humanos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Frequência do Gene , Síndrome Uveomeningoencefálica/genética , Síndrome Uveomeningoencefálica/metabolismo , Estudos de Casos e Controles , População do Leste Asiático , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Citocinas/genética , Citocinas/metabolismo , RNA Mensageiro , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismoRESUMO
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) are the numbers of the lipid transfer protein/lipopolysaccharide-binding protein family and play crucial roles in the innate immune response to Gram-negative bacteria. A novel Sb-BPI/LBP1 from ark shell Scapharca broughtonii was isolated by expressed sequence tag (EST) and RACE techniques. The Sb-BPI/LBP1 cDNA encoded a polypeptide of 484 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 463 amino acids. The deduced amino acid sequence of Sb-BPI/LBP1 contained an N-terminal BPI/LBP/CETP domain BPI1 with three functional regions that display LPS-binding activity, and a C-terminal BPI/LBP/CETP domain BPI2. In structure and sequence, Sb-BPI/LBP1 showed highly similar to those of the BPI/LBPs from invertebrate and non-mammalian vertebrate, the LBPs and BPIs from mammal. By quantitative real-time RT-PCR, Sb-BPI/LBP1 transcripts could be detected in all normal tested tissues, including hepatopancreas, adductor muscle, mantle margin, heart, gonad, gill and hemocytes, and was universally up-regulatable at 24 h post LPS challenge. The mRNA expression of Sb-BPI/LBP1 in hemocytes was the most sensitive to LPS challenge, significantly up-regulated at 12 h post LPS challenge and peaked at 24 h (16.76-fold, P < 0.05). These results suggested that Sb-BPI/LBP1 was a constitutive and inducible acute-phase protein contributing to the host immune defense against Gram-negative bacterial infection in ark shell S. broughtonii.
Assuntos
Proteínas de Fase Aguda/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Scapharca/metabolismo , Proteínas de Fase Aguda/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Sequência de Bases , Proteínas Sanguíneas/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica/fisiologia , Bactérias Gram-Negativas , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/toxicidade , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , FilogeniaRESUMO
Big defensins, endogenous cysteine-rich antimicrobial peptides (AMPs) with antimicrobial activity and immunomodulatory property, play crucial roles in host defense against various microbial pathogens. A novel big defensin (Sb-BDef1) of ark shell Scapharca broughtonii was identified by expressed sequence tag (EST) and RACE techniques. The Sb-BDef1 cDNA contained an open reading frame (ORF) of 336-bp encoding a polypeptide of 111 amino acids with a putative signal peptide of 21 amino acid residues, followed by a putative propeptide of 11 residues and a putative mature peptide of 79 residues. The mature peptide shared the common features of big defensins, including a high hydrophobic residues region (59%) in the N-terminus, a defensin domain in the C-terminus, which perfectly corresponds to the six conserved disulfide-bonded cysteine residues involved in the formation of the internal disulfide bridges (C1-C5, C2-C4 and C3-C6) in all big defensins from mollusk, horseshoe crab and amphioxus. Quantitative real-time PCR analysis revealed that the expression of Sb-BDef1 transcript was detected in all the tissues examined from normal ark shells, and the temporal expression of Sb-BDef1 mRNA was remarkably up-regulated at 8, 16 h in hemocytes, and at 16, 24 h in hepatopancreas after Vibrio anguillarum-challenge, respectively. These results suggested that Sb-BDef1 was a constitutive and inducible acute-phase protein and should be involved in immune response of Gram-negative microbial infection in ark shell S. broughtonii.