Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Sci Total Environ ; 946: 174500, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971245

RESUMO

Paddy drainage is the critical period for rice grain to accumulate cadmium (Cd), however, its roles on spatial heterogeneity of grain Cd within individual fields are still unknown. Herein, field plot experiments were conducted to study the spatial variations of rice Cd under continuous and intermittent (drainage at the tillering or grain-filling or both stages) flooding conditions. The spatial heterogeneity of soil moisture and key factors involved in Cd mobilization during drainages were further investigated to explain grain Cd variation. Rice grain Cd levels under continuous flooding ranged from 0.16 to 0.22 mg kg-1 among nine sampling sites within an individual field. Tillering drainage slightly increased grain Cd levels (0.19-0.31 mg kg-1) with little change in spatial variation. However, grain-filling drainage greatly increased grain Cd range to 0.33-0.95 mg kg-1, with a huge spatial variation observed among replicated sites. During two drainage periods, soil moisture decreased variously in different monitoring sites; greater variation (mean values ranged from 0.14 to 0.27 m3 m-3) was observed during grain-filling drainage. Accordingly, 2.9-3.3-fold variation in soil Eh and 0.55-0.67-unit variation in soil pH were observed among those sites. In the soil with low moisture, ferrous fractions such as ferrous sulfide (FeS) were prone to be oxidized to ferric fractions; meanwhile, the followed generation of hydroxyl radicals involved in Cd remobilization was enhanced. Consequently, soil dissolved Cd changed from 2.97 to 8.92 µg L-1 among different sampling sites during grain-filling drainage; thus, large variation was observed in grain Cd levels. The findings suggest that grain-filling drainage is the main process controlling spatial variation of grain Cd, which should be paid more attention in paddy Cd evaluation.

2.
Chemosphere ; 360: 142359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782133

RESUMO

The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 µM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.


Assuntos
Ferro , Níquel , Triclosan , Poluentes Químicos da Água , Triclosan/química , Níquel/química , Ferro/química , Poluentes Químicos da Água/química , Pós
3.
Int Immunopharmacol ; 134: 112173, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728884

RESUMO

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.


Assuntos
Artrite Reumatoide , Biomarcadores , Interleucina 22 , Interleucinas , Doenças Pulmonares Intersticiais , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/complicações , Artrite Reumatoide/imunologia , Artrite Reumatoide/sangue , Biomarcadores/sangue , Interleucinas/sangue , Interleucinas/metabolismo , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/imunologia
4.
Front Med (Lausanne) ; 11: 1252073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695017

RESUMO

Objective: This study aims to investigate the current status of multiple HPV infection and its association with cervical lesions in the western region of Guangzhou. Methods: A retrospective analysis of clinical data from cervical cancer screening patients was conducted. The patients were grouped based on HPV genotypes and cervical pathology results to explore the prevalence of high-risk HPV infection and its relationship with cervical lesions in the western region of Guangzhou. The study also analyzed the relationship between high-risk HPV infection and cervical lesions among different age groups. Results: A total of 13,060 patients were included in the study, with an overall infection rate of 18.46% (2,411/13,060). Among them, the infection rate of HPV genotype 16 was 14.14% (341/2,411), HPV genotype 18 was 5.23% (126/2,411), and other 12 high-risk HPV genotypes accounted for 71.96% (1,735/2,411). When comparing the incidence of HSIL+ (high-grade squamous intraepithelial lesion or worse) among different HPV genotypes, the results showed that the HPV 16 infection group (47.50%) had a higher incidence than the HPV 18 infection group (25.40%) and the other 12 high-risk HPV genotypes group (15.97%; P < 0.05). In the multiple infection groups, the pathogenicity rates were 63.64% (7/11) for the 16+18 HPV infection group, 42.97% (55/128) for the 16+other 12 high-risk HPV genotypes infection group, 26.79% (15/56) for the 18+other 12 high-risk HPV genotypes infection group, and 57.14% (8/14) for the 16+18+other 12 high-risk HPV genotypes infection group. These rates were significantly different compared to the single infection group (P <0.01). Although there was no statistically significant difference in the incidence of cervical cancer between the HPV 16 infection group and the HPV 18 infection group, both groups had a higher incidence compared to the group with other 12 high-risk HPV genotypes infection (P < 0.05). Further analysis suggests that the severity of cervical lesions is not associated with the number of high-risk HPV infections, i.e., the severity of cervical lesions is unrelated to multiple HPV infections but is instead related to the pathogenicity of the HPV genotypes. The infection rate and multiple HPV infection rate of women under 35 years old were higher than those of women aged 35 and above (20% vs. 17.1%; 2% vs. 1.3%; P < 0.05). Moreover, the pathogenicity rate of HSIL+ among high-risk HPV infection increased with age. Conclusions: In the western region of Guangzhou, the overall infection rate of high-risk HPV is 18.46%. The severity of cervical lesions is unrelated to multiple HPV infections. The fundamental reason is the distinct pathogenicity of different HPV genotypes. The HSIL+ pathogenicity rates, from high to low, are in sequence for HPV 16, HPV 18, and the other 12 HPV types.

5.
Water Res ; 256: 121573, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608618

RESUMO

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Assuntos
Hidrogênio , Ferro , Hidrogênio/química , Ferro/química , Oxirredução
6.
Environ Sci Technol ; 58(16): 6900-6912, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613493

RESUMO

Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.

7.
Sci Total Environ ; 926: 172046, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552983

RESUMO

Cadmium (Cd) contamination in rice ecosystems posed a critical challenge to global food security and environmental health. This study aimed to unveil the key mechanisms trough hydroponic experiments by which chloride (Cl-) promoted the absorption and accumulation of cadmium (Cd) in rice plants. The findings elucidated that the addition of Cl- increased Cd uptake by rice roots (5.1 % âˆ¼ 61 %), acting both directly by enhancing root morphology and indirectly through regulating of the main transporter genes of Cd. The study unveiled that Cl- addition significantly improves Cd bioavailability in roots, which was discernible through the augmentation of Cd concentration and proportion in subcellular fractions, coupled with elevated energy values in key cellular components. Moreover, Cl- addition further augmented the intricate process of Cd transport from roots to shoots (16.1- 86.7 %), which was mainly attributed to the underexpression of OsHMA3 and the decrease in the formation of sulfuhydryl substances. This research provides a comprehensive understanding of the complex mechanisms governing Cd dynamics in rice plants in the presence of Cl-. By elucidating these processes, our findings not only contribute to fundamental knowledge in plant metal uptake but also hold promising implications for mitigating Cd contamination in rice cultivation systems.


Assuntos
Oryza , Poluentes do Solo , Cádmio , Oryza/fisiologia , Cloretos , Ecossistema , Transporte Biológico , Raízes de Plantas
8.
BMC Cancer ; 24(1): 364, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515073

RESUMO

BACKGROUND: Recent studies have demonstrated that APOC1 is associated with cancer progression, exerting cancer-promoting and immune infiltration-promoting effects. Nevertheless, there is currently no report on the presence of APOC1 in ovarian cancer (OV). METHOD: In this study, we conducted data analysis using the GEO and TCGA databases. We conducted a thorough bioinformatics analysis to investigate the function of APOC1 in OV, utilizing various platforms including cBioPortal, STRING, GeneMANIA, LinkedOmics, GSCALite, TIMER, and CellMarker. Additionally, we performed immunohistochemical staining on tissue microarrays and conducted in vitro cellular assays to validate our findings. RESULT: Our findings reveal that APOC1 expression is significantly upregulated in OV compared to normal tissues. Importantly, patients with high APOC1 levels show a significantly poorer prognosis. Furthermore, our study demonstrated that APOC1 exerted a crucial function in promoting the capacity of ovarian cancer cells to proliferate, migrate, and invade. Additionally, we have identified that genes co-expressed with APOC1 are primarily associated with adaptive immune responses. Notably, the levels of APOC1 in OV exhibit a correlation with the presence of M2 Tumor-associated Macrophages (TAMs). CONCLUSION: APOC1 emerges as a promising prognostic biomarker for OV and exhibits a significant association with M2 TAMs in OV.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores , Macrófagos , Neoplasias Ovarianas/genética , Prognóstico
9.
Anal Methods ; 16(12): 1741-1747, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38372017

RESUMO

The present work assessed the purity of [Glu1]-fibrinopeptide B (GFB) as a model peptide using gas chromatography - isotope dilution mass spectrometry. GFB and various isotope-labeled amino acids were hydrolyzed in HCl and then derivatized using optimized procedures. The primary impurity in GFB was also identified and used to correct the final result. A method repeatability of 0.5% was achieved and linear calibrations were obtained for five amino acids. The LOD and LOQ were 0.041 to 0.096 µg g-1, and 0.16 to 0.56 µg g-1, respectively. The purity of GFB was found to be (0.715 ± 0.012) g g-1. This technique exhibited comparable accuracy to that obtainable from liquid chromatography - isotope dilution mass spectrometry but at lower cost. This method could be employed as a reference technique or in fields such as clinical diagnostics or bio-pharmaceutical peptide purity analysis.


Assuntos
Fibrinopeptídeo B , Peptídeos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Aminoácidos , Isótopos
10.
Front Immunol ; 15: 1286973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361940

RESUMO

Background: The prognosis of anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+DM) is poor and heterogeneous. Rapidly progressive interstitial lung disease (RP-ILD) is these patients' leading cause of death. We sought to develop prediction models for RP-ILD risk in anti-MDA5+DM patients. Methods: Patients with anti-MDA5+DM were enrolled in two cohorts: 170 patients from the southern region of Jiangsu province (discovery cohort) and 85 patients from the northern region of Jiangsu province (validation cohort). Cox proportional hazards models were used to identify risk factors of RP-ILD. RP-ILD risk prediction models were developed and validated by testing every independent prognostic risk factor derived from the Cox model. Results: There are no significant differences in baseline clinical parameters and prognosis between discovery and validation cohorts. Among all 255 anti-MDA5+DM patients, with a median follow-up of 12 months, the incidence of RP-ILD was 36.86%. Using the discovery cohort, four variables were included in the final risk prediction model for RP-ILD: C-reactive protein (CRP) levels, anti-Ro52 antibody positivity, short disease duration, and male sex. A point scoring system was used to classify anti-MDA5+DM patients into moderate, high, and very high risk of RP-ILD. After one-year follow-up, the incidence of RP-ILD in the very high risk group was 71.3% and 85.71%, significantly higher than those in the high-risk group (35.19%, 41.69%) and moderate-risk group (9.54%, 6.67%) in both cohorts. Conclusions: The CROSS model is an easy-to-use prediction classification system for RP-ILD risk in anti-MDA5+DM patients. It has great application prospect in disease management.


Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Humanos , Masculino , Dermatomiosite/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Helicase IFIH1 Induzida por Interferon , Estudos Retrospectivos , Autoanticorpos
11.
Eco Environ Health ; 2(3): 107-116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38074988

RESUMO

Alcohol consumption alters gut microflora and damages intestinal tight junction barriers, which may affect arsenic (As) oral bioavailability. In this study, mice were exposed to arsenate in the diet (6 µg/g) over a 3-week period and gavaged daily with Chinese liquor (0.05 or 0.10 mL per mouse per day). Following ingestion, 78.0% and 72.9% of the total As intake was absorbed and excreted via urine when co-exposed with liquor at daily doses of 0.05 or 0.10 mL, significantly greater than when As was supplied alone (44.7%). Alcohol co-exposure significantly altered gut microbiota but did not significantly alter As biotransformation in the intestinal tract or tissue. Significantly lower relative mRNA expression was observed for genes encoding for tight junctions in the ileum of liquor co-exposed mice, contributing to greater As bioavailability attributable to enhanced As absorption via the intestinal paracellular pathway. However, As concentration in the liver, kidney, and intestinal tissue of liquor-treated mice was decreased by 24.4%-42.6%, 27.5%-38.1%, and 28.1%-48.9% compared to control mice. This was likely due to greater renal glomerular filtration rate induced by alcohol, as suggested by significantly lower expression of genes encoding for renal tight junctions. In addition, in mice gavaged daily with 0.05 mL liquor, the serum antidiuretic hormone level was significantly lower than control mice (2.83 ± 0.59 vs. 5.40 ± 1.10 pg/mL), suggesting the diuretic function of alcohol consumption, which may facilitate As elimination via urine. These results highlight that alcohol consumption has a significant impact on the bioavailability and accumulation of As.

12.
Transl Cancer Res ; 12(10): 2556-2571, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969377

RESUMO

Background: RNA methylation is a significant form of post-transcriptional modification that has been implicated in various diseases, including cancers. One prominent type of RNA methylation is 5-Methylcytosine (m5C), which primarily regulates RNA stability, transcription, and translation. However, the role of m5C-related gene regulation in cell adhesion within uterine corpus endometrial carcinoma (UCEC) remains unexplored. Therefore, the objective of this study was to investigate the association between RNA m5C methylation and UCEC and develop a prognostic predictive model to forecast survival outcomes in UCEC patients. Methods: The RNA datasets were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The dataset was used to explore the interaction relationships of m5C regulators in UCEC. Unsupervised clustering analysis identified clusters with distinct m5C modification patterns. Different clusters underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment level analysis to investigate the effects of pathways related to m5C methylation, which were further validated through in vitro cellular experiments. A prognostic predictive model was developed using the least absolute shrinkage and selection operator (LASSO) and multivariate regression analysis. Results: Two clusters with distinct m5C modification patterns were identified using unsupervised cluster analysis. Furthermore, the prognosis of cluster 2 was found to be worse. Enrichment analysis showed alterations in cell adhesion-related pathways in both clusters, as well as differences between the clusters. Through this analysis, we identified 25 genes with significant prognostic value. Finally, a prognostic predictive model comprising NSUN2 and YBX1 was constructed. Conclusions: In conclusion, diverse m5C modification patterns display distinct cell adhesion properties in UCEC, which are correlated with prognosis and offer significant potential as prognostic markers for UCEC assessment. We developed a prognostic predictive model to accurately predict the prognosis of UCEC.

13.
Cancer Biol Ther ; 24(1): 2263921, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800580

RESUMO

RNA methyltransferase nucleolar protein p120 (NOP2), commonly referred to as NOP2/Sun RNA methyltransferase family member 1 (NSUN1), is involved in cell proliferation and is highly expressed in various cancers. However, its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Our study investigated the expression of NOP2 in HGSOC tissues and normal fimbria tissues, and found that NOP2 was significantly upregulated in HGSOC tissues. Our experiments showed that NOP2 overexpression promoted cell proliferation in vivo and in vitro and increased the migration and invasion ability of HGSOC cells in vitro. Furthermore, we identified Rap guanine nucleotide exchange factor 4 (RAPGEF4) as a potential downstream target of NOP2 in HGSOC. Finally, our findings suggest that the regulation of NOP2 and RAPGEF4 may depend on m5C methylation levels.


Assuntos
Neoplasias Ovarianas , RNA , Humanos , Feminino , Metiltransferases/genética , Neoplasias Ovarianas/genética , Proliferação de Células , Proteínas Nucleares/metabolismo , Fatores de Troca do Nucleotídeo Guanina , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
14.
Environ Sci Technol ; 57(41): 15422-15431, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37797956

RESUMO

Arsenic (As) exposure has been related to many diseases, including cancers. Given the antioxidant and anti-inflammatory properties, the dietary supplementation of polyphenols may alleviate As toxicity. Based on a mouse bioassay, this study investigated the effects of chlorogenic acid (CA), quercetin (QC), tannic acid (TA), resveratrol (Res), and epigallocatechin gallate (EGCG) on As bioavailability, biotransformation, and toxicity. Intake of CA, QC, and EGCG significantly (p < 0.05) increased total As concentrations in liver (0.48-0.58 vs 0.27 mg kg-1) and kidneys (0.72-0.93 vs 0.59 mg kg-1) compared to control mice. Upregulated intestinal expression of phosphate transporters with QC and EGCG and proliferation of Lactobacillus in the gut of mice treated with CA and QC were observed, facilitating iAsV absorption via phosphate transporters and intestinal As solubility via organic acid metabolites. Although As bioavailability was elevated, serum levels of alpha fetoprotein and carcinoembryonic antigen of mice treated with all five polyphenols were reduced by 13.1-16.1% and 9.83-17.5%, suggesting reduced cancer risk. This was mainly due to higher DMAV (52.1-67.6% vs 31.4%) and lower iAsV contribution (4.95-10.7% vs 27.9%) in liver of mice treated with polyphenols. This study helps us develop dietary strategies to lower As toxicity.


Assuntos
Arsênio , Polifenóis , Camundongos , Animais , Polifenóis/farmacologia , Arsênio/toxicidade , Disponibilidade Biológica , Suplementos Nutricionais , Biotransformação , Proteínas de Transporte de Fosfato
15.
J Hazard Mater ; 460: 132402, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660624

RESUMO

The addition of a secondary metal (such as Cu, Co, Ni and Pd) to form iron-based bimetallic particles could enhance the reactivity of zero valent iron (ZVI). This study proposed a new synthesis method for preparing Cu-Fe bimetals (Cu-Febm (CuSO4)) by ball milling mZVI and CuSO4. During ball-milling process, 40% of Cu2+ can be reduced to Cu0, which formed galvanic couple with Fe0 in a way of Fe/Cu alloy structure. Part Cu2+ was only reduced to Cu+ (corresponding to Cu2O), while 29% of SO42- was reduced to Sx2- (corresponding to FeSx). The appearance of Cu2O was not conducive to the activity of Cu-Febm (CuSO4) particles, the formation of Fe0/FeSx structure compensated for the partial loss of Fe/Cu alloy. H•abs was identified as the main active species for TCE degradation by Cu-Febm (CuSO4) bimetals. The Cu-Febm (CuSO4) bimetals has great potential for the removal of chlorinated hydrocarbons in water.

16.
J Hazard Mater ; 460: 132327, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639785

RESUMO

Cadmium (Cd) accumulation in edible plant tissues poses a serious threat to human health through the food chain. Assessing the availability of soil Cd is crucial for evaluating associated environmental risks. However, existing experimental methods and traditional models are time-consuming and inefficient. In this study, we developed machine learning models to predict soil available Cd based on soil properties, using a dataset comprising 585 data points covering 585 soils. Traditional machine learning models exhibited prediction values beyond the theoretical range, urging the need for alternative approaches. To address this, different models were tested, and the post-constraint eXtreme Gradient Boosting (XGBoost) model was found to possess the best predictive performance (R2 =0.81) outperform traditional linear regression model in terms of accuracy. Furthermore, we explored the relationship between soil available Cd and wheat grain Cd and rice grain Cd. Linear regression models were developed using 302 data points for wheat and 563 data points for rice. Results demonstrated a significant correlation between soil available Cd and wheat grain Cd (R2 =0.487) as well as rice grain Cd (R2 =0.43).


Assuntos
Cádmio , Oryza , Humanos , Grão Comestível , Cadeia Alimentar , Aprendizado de Máquina , Solo , Triticum
17.
Int Immunopharmacol ; 123: 110760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549516

RESUMO

Systemic immune status influences the elimination of tumor cells. However, it remains unclear how chronic inflammation in allergic diseases affects the tumor microenvironment and tumorigenesis. To investigate tumor progression in a state of heightened allergic inflammation, we established a mouse model of allergic inflammation. We used house dust mite extract to induce a hyper-reactive systemic immune response. Additionally, we subcutaneously inoculated two types of cancer cells (CT26 and 4T1 tumors). We conducted immune profiling of the ex-vivo tumor mass using multicolor flow cytometry staining and performed dynamic analysis of peripheral cytokines to explore the significant relationship between the development of allergic inflammation and tumorigenesis. We found that mice in a state of allergic inflammation were more susceptible to developing tumors. Interestingly, the growth of T cell-inflamed was inhibited in the allergic state, while growth of non-T cell-inflamed was promoted. Further research revealed that natural killer (NK) cells with enhanced tumor-killing or immune-regulating abilities were more active in " hot " tumors. Inhibiting NK cell activity can partially alleviate the impact of allergic inflammation on tumor growth. In summary, our results suggest that NK cells play significant role in suppressing tumor growth in an allergic inflammation mouse model. This phenomenon seems to be closely linked to both the inherent characteristics of the tumor and its interaction with the immune system. The innate immune system can be mobilized to synergize with the adaptive immune system to inhibit tumor growth, which opens a new way for a tumor immunotherapy.


Assuntos
Inflamação , Neoplasias , Animais , Camundongos , Células Matadoras Naturais , Citocinas , Linfócitos T , Carcinogênese , Microambiente Tumoral
18.
Sci Total Environ ; 897: 166048, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572922

RESUMO

Microplastics weathering by various types of oxidants in the oxic environment and their interaction with environmental contaminants have drawn numerous scientific attention. However, the environmental fate of microplastics under a reducing environment has been largely unresolved. Herein, the change of physicochemical and redox properties of microplastics during the weathering under a sulfate-reducing environment and the interaction with arsenite were addressed. The sulfurization of phenol-formaldehyde resin microplastics under a sulfate-reducing environment generated smooth and porous particles with the induction of organic S species. Multiple spectroscopic results demonstrated thioether and thiophene groups formed by the substitute removal of O-containing functional groups. Moreover, the sulfurization process induced the reduction of carbonyl groups and oxidation of phenolic hydroxyl groups and resulted in the formation of semiquinone radicals. The O-containing functional groups contributed to microplastics redox property and As(III) oxidation while S-containing functional groups showed no obvious effect. The sulfurized microplastics had lower efficiency in mediating arsenite oxidation than the unsulfurized counterparts due to the decreased electron donating capacity. Producing hydrogen peroxides by electron-donating phenol groups and semiquinone radicals and the direct semiquinone radicals oxidation could mediate arsenite oxidation. The findings of this study help us understand the fate of microplastics in redox fluctuation interfaces.

19.
Microbiol Spectr ; 11(4): e0151023, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37534988

RESUMO

The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.


Assuntos
Pythium , Compostos Orgânicos Voláteis , Zingiber officinale , Pythium/genética , Compostos Orgânicos Voláteis/farmacologia , Zingiber officinale/microbiologia , Resistência à Doença , Nicotiana , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
20.
Int J Nanomedicine ; 18: 3781-3800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457802

RESUMO

Purpose: In this study, we aimed to report the biological characteristics of the first successful synthesis of gentiopicroside-loaded chitosan nanoparticles and to evaluate the therapeutic effects and preliminary mechanisms of gentiopicrin-loaded chitosan on psoriasis-like cell and mouse models. Methods: Gentiopicroside-loaded chitosan nanoparticles (CHI-GEN) were prepared, and their biological characteristics were evaluated. HaCaT keratinocytes were stimulated with TNF-α to establish a psoriatic keratinocyte model. MTT assay and flow cytometry were used to measure cell viability and apoptosis, respectively. mRNA levels of K17, VEGF A, and IL-6 and IL-23A were detected using qRT-PCR. These tests were used to preliminarily assess the effects of CHI-GEN on keratinocyte proliferation and inflammation. Imiquimod was used to construct a psoriasis-like mice model. The severity of psoriasis was scored based on the psoriasis area severity index (PASI), H&E staining was used to observe the histological changes and the level of inflammation and cell proliferation of skin lesions was evaluated by measuring the mRNA levels of K17, IL-23A, and IL-17A using qRT-PCR. Results: The average particle size of CHI-GEN nanoparticles was approximately 100 nm, and the zeta potential was 2.69 ± 0.87 mV. The cumulative release was 67.2% in solutions of pH 5.5 at 24 h. GEN reduced TNF-α-induced excessive proliferation of HaCaT keratinocytes and downregulated mRNA levels of K17, VEGF A, and inflammatory cytokines IL-6 and IL-23A, which was more obvious in the CHI-GEN treatment group. Additionally, CHI-GEN significantly improved the severity of skin lesions in psoriasis-like mice and downregulated the mRNA expressions of IL-6, IL-23A, and IL-17A in mice skin lesions. Conclusion: In conclusion, we successfully prepared gentiopicrin-chitosan nanoparticles. Our results show that these nanoparticles have anti-psoriasis activity, inhibits keratinocyte proliferation and improves symptoms in psoriasis model mice and can be used to develop an effective strategy for the treatment of psoriasis.


Assuntos
Quitosana , Dermatite , Nanopartículas , Psoríase , Animais , Camundongos , Imiquimode/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Interleucina-17/uso terapêutico , Quitosana/farmacologia , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queratinócitos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dermatite/tratamento farmacológico , Proliferação de Células , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA