Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674707

RESUMO

Camellia oleifera (C. oleifera) is one of the four main, woody, edible oil tree species in the world, while C. oleifera anthracnose is mainly caused by the fungus Colletotrichum fructicola (C. fructicola), which severely affects the yield of C. oleifera and the quality of tea oil. Bacillus velezensis (B. velezensis) CSUFT-BV4 is an antagonistic endophytic bacterium isolated from healthy C. oleifera leaves. This study aimed to investigate the biocontrol potential of strain CSUFT-BV4 against C. oleifera anthracnose and its possible functional mechanism, and to determine its growth-promoting characteristics in host plants. In vitro, CSUFT-BV4 was shown to have efficient biofilm formation ability, as well as significant functions in the synthesis of metabolic substances and the secretion of probiotic substances. In addition, the CSUFT-BV4 fermentation broth also presented efficient antagonistic activities against five major C. oleifera anthracnose pathogens, including C. fructicola, C. gloeosporioides, C. siamense, C. camelliae, and C. kahawae, and the inhibition rate was up to 73.2%. In vivo, it demonstrated that the growth of C. oleifera treated with CSUFT-BV4 fermentation broth was increased in terms of stem width, plant height, and maximum leaf area, while the activities of various defense enzymes, e.g., superoxide dismutase (SOD), phenylalanine aminotransferase (PAL), and polyphenol oxidase (PPO), were effectively increased. The remarkable antagonistic activities against C. oleifera anthracnose, the growth-promoting characteristics, and the induction of host defense responses indicate that endophytic bacterium CSUFT-BV4 can be effectively used in the biological control of C. oleifera anthracnose in the future, which will have a positive impact on the development of the C. oleifera industry.

2.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675525

RESUMO

Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.


Assuntos
Benzofuranos , Lesões Encefálicas Traumáticas , Depsídeos , Gelatina , Ácido Hialurônico , Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Animais , Hidrogéis/química , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Gelatina/química , Ácido Hialurônico/química , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Benzofuranos/química , Benzofuranos/farmacologia , Benzofuranos/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Masculino , Proliferação de Células/efeitos dos fármacos
3.
Biomedicines ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397955

RESUMO

Ischemia reperfusion (I/R) is a common pathological process which occurs mostly in organs like the heart, brain, kidney, and lung. The injury caused by I/R gradually becomes one of the main causes of fatal diseases, which is an urgent clinical problem to be solved. Although great progress has been made in therapeutic methods, including surgical, drug, gene therapy, and transplant therapy for I/R injury, the development of effective methods to cure the injury remains a worldwide challenge. In recent years, exosomes have attracted much attention for their important roles in immune response, antigen presentation, cell migration, cell differentiation, and tumor invasion. Meanwhile, exosomes have been shown to have great potential in the treatment of I/R injury in organs. The study of the exosome-mediated signaling pathway can not only help to reveal the mechanism behind exosomes promoting reperfusion injury recovery, but also provide a theoretical basis for the clinical application of exosomes. Here, we review the research progress in utilizing various exosomes from different cell types to promote the healing of I/R injury, focusing on the classical signaling pathways such as PI3K/Akt, NF-κB, Nrf2, PTEN, Wnt, MAPK, toll-like receptor, and AMPK. The results suggest that exosomes regulate these signaling pathways to reduce oxidative stress, regulate immune responses, decrease the expression of inflammatory cytokines, and promote tissue repair, making exosomes a competitive emerging vector for treating I/R damage in organs.

4.
Int J Biol Macromol ; 262(Pt 2): 130130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354921

RESUMO

Poly (L-lactic acid) (PLLA) composite materials with both excellent antibacterial properties and mechanical properties are highly desirable for both food packaging and biomedical applications. However, a facile method to prepare transparent PLLA composite films with both excellent antibacterial and mechanical properties is still lacking. In this work, blend films based on PLLA, tea polyphenols (TP) and poly (styrene-co-glycidyl methacrylate) (SG) copolymers (PLLA/TP/SG) were prepared by melt blending using twin screw extruder. The blend films showed high transparency with a brownish color originated from tea polyphenols. Both SEM and DSC analyses confirmed that the blends are thermodynamically compatible. GPC and mechanical assessments demonstrated that the PLLA/TP binary blends exhibit reduced molecular weight and compromised mechanical properties, compared to neat PLLA. However, incorporating SG copolymer resulted in increased molecular weight and improved mechanical properties for the PLLA/TP/SG blends. The FT-IR spectra exhibited a shift to lower wavenumber for the absorption peak associated with the benzene ring on TPs after blending with PLLA and SG, indicating the occurrence of transesterification between PLLA and TP. Plate coating studies revealed that the PLLA/TP/SG blends with TP incorporation at 5 wt% exhibited a bacteriostatic rate of 99.99 % against Staphylococcus aureus and Escherichia coli. Overall, our study reveals that the PLLA/TP/SG blend films exhibit excellent antibacterial properties coupled with good mechanical properties, rendering them a promising candidate for antibacterial packaging materials.


Assuntos
Antibacterianos , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Ácido Láctico , Chá
5.
J Ethnopharmacol ; 324: 117720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.


Assuntos
Glicosídeos , Proteômica , Camundongos , Animais , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Perfilação da Expressão Gênica , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1/metabolismo
6.
Front Oncol ; 13: 1143600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188191

RESUMO

Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by two-dimensional (2D) cell culture models for studying its complicated tumor microenvironment including diverse contents and dynamic nature. Recently developed three-dimensional (3D) bioprinting is a state-of-the-art technology for fabrication of biological constructs through layer-by-layer deposition of bioinks in a spatially defined manner, which is computer-aided and designed to generate viable 3D constructs. 3D bioprinting has the potential to more closely recapitulate the tumor microenvironment, dynamic and complex cell-cell and cell-matrix interactions compared to the current methods, which benefits from its precise definition of positioning of various cell types and perfusing network in a high-throughput manner. In this review, we introduce and compare multiple types of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We discuss the progress and application of 3D bioprinting in HPB and gastrointestinal cancers, focusing on tumor model manufacturing. We also highlight the current challenges regarding clinical translation of 3D bioprinting and bioinks in the field of digestive tumor research. Finally, we suggest valuable perspectives for this advanced technology, including combination of 3D bioprinting with microfluidics and application of 3D bioprinting in the field of tumor immunology.

7.
Curr Issues Mol Biol ; 44(10): 4960-4976, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36286052

RESUMO

Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-ß/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.

8.
Front Microbiol ; 13: 918339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966682

RESUMO

Oil tea (Camellia oleifera), mainly used to produce high-quality edible oil, is an important cash crop in China. Anthracnose of oil tea is a considerable factor that limits the yield of tea oil. In order to effectively control the anthracnose of oil tea, researchers have worked hard for many years, and great progress has been made in the research of oil tea anthracnose. For instance, researchers isolated a variety of Colletotrichum spp. from oil tea and found that Colletotrichum fructicola was the most popular pathogen in oil tea. At the same time, a variety of control methods have been explored, such as cultivating resistant varieties, pesticides, and biological control, etc. Furthermore, the research on the molecular pathogenesis of Colletotrichum spp. has also made good progress, such as the elaboration of the transcription factors and effector functions of Colletotrichum spp. The authors summarized the research status of the harm, pathogen types, control, and pathogenic molecular mechanism of oil tea anthracnose in order to provide theoretical support and new technical means for the green prevention and control of oil tea anthracnose.

9.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010640

RESUMO

Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood-brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate "water distribution" system in cells, exemplified by astrocytes, under normal and pathological conditions.


Assuntos
Aquaporinas , Astrócitos , Aquaporinas/metabolismo , Astrócitos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Água/metabolismo
10.
BMC Complement Med Ther ; 22(1): 121, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505340

RESUMO

BACKGROUND: Rheum tanguticum (R. tanguticum) is an edible and medicinal plant that exhibits high antioxidant activity. The purpose of the present study was to investigate the bioactive components of its seeds and the potential mechanisms of antioxidant activity to provide a foundation for further developmental work on R. tanguticum seeds as a functional food. METHODS: In this study, the antioxidant activities of R. tanguticum seeds were measured using DPPH, ABTS and FRAP assays. LC-Q-TOF/MS was used to identify the active compounds in the seeds, and Swiss Target Prediction was used to identify their potential targets. The DisGENET, DrugBank, OMIM and GeneCard databases were used to search for antioxidant-related targets. RESULTS: The component-target-pathway network was constructed and included 5 compounds and 9 target genes. The hub genes included ESR1, APP, MAPK8, HSP90AA1, AKT1, MMP2, PTGS2, TGFB1 and JUN. The antioxidant activity signaling pathways of the compounds for the treatment of diseases were the cancer signaling pathway, estrogen signaling pathway, colorectal cancer signaling pathway, MAPK signaling pathway, etc. Molecular docking revealed that the compounds in R. tanguticum seeds could inhibit potential targets (AKT1, ESR1 and PTGS2). CONCLUSION: Molecular docking studies revealed that the binding energy score between liriodenine and PTGS2 was the highest (8.16), followed by that of chrysophanol (7.10). This result supports the potential for PTGS2-targeted drug screening and design.


Assuntos
Rheum , Antioxidantes/farmacologia , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Rheum/química , Sementes
11.
Br J Cancer ; 127(4): 649-660, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597867

RESUMO

BACKGROUND: Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA) therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer immunity in vitro. METHODS: CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble factors. RESULTS: The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be mediated by direct cell-cell contact and by release of soluble factors, although soluble factors only decreased viability in one organoid line. CONCLUSIONS: In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ductos Biliares Intra-Hepáticos/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Organoides , Linfócitos T/patologia
12.
Br J Cancer ; 126(1): 10-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400801

RESUMO

Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.


Assuntos
Colangiocarcinoma/imunologia , Proteínas de Checkpoint Imunológico/imunologia , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Ensaios Clínicos como Assunto , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia
13.
Cancers (Basel) ; 13(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065388

RESUMO

High recurrence rates after resection of hepatocellular carcinoma (HCC) with curative intent impair clinical outcomes of HCC. Cancer/testis antigens (CTAs) are suitable targets for cancer immunotherapy if selectively expressed in tumor cells. The aims were to identify CTAs that are frequently and selectively expressed in HCC-tumors, and to investigate whether CTAs could serve as biomarkers for occult metastasis. Tumor and paired tumor-free liver (TFL) tissues of HCC-patients and healthy tissues were assessed for mRNA expression of 49 CTAs by RT-qPCR and protein expression of five CTAs by immunohistochemistry. Twelve CTA-mRNAs were expressed in ≥10% of HCC-tumors and not in healthy tissues except testis. In tumors, mRNA and protein of ≥ 1 CTA was expressed in 78% and 71% of HCC-patients, respectively. In TFL, CTA mRNA and protein was found in 45% and 30% of HCC-patients, respectively. Interestingly, CTA-expression in TFL was an independent negative prognostic factor for post-resection HCC-recurrence and survival. We established a panel of 12 testis-restricted CTAs expressed in tumors of most HCC-patients. The increased risk of HCC-recurrence in patients with CTA expression in TFL, suggests that CTA-expressing (pre-)malignant cells may be a source of HCC-recurrence, reflecting the relevance of targeting these to prevent HCC-recurrence.

14.
Cell Mol Gastroenterol Hepatol ; 12(2): 443-464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781741

RESUMO

BACKGROUND & AIMS: TIGIT is a co-inhibitory receptor, and its suitability as a target for cancer immunotherapy in HCC is unknown. PD1 blockade is clinically effective in about 20% of advanced HCC patients. Here we aim to determine whether co-blockade of TIGIT/PD1 has added value to restore functionality of HCC tumor-infiltrating T cells (TILs). METHODS: Mononuclear leukocytes were isolated from tumors, paired tumor-free liver tissues (TFL) and peripheral blood of HCC patients, and used for flow cytometric phenotyping and functional assays. CD3/CD28 T-cell stimulation and antigen-specific assays were used to study the ex vivo effects of TIGIT/PD1 single or dual blockade on T-cell functions. RESULTS: TIGIT was enriched, whereas its co-stimulatory counterpart CD226 was down-regulated on PD1high CD8+ TILs. PD1high TIGIT+ CD8+ TILs co-expressed exhaustion markers TIM3 and LAG3 and demonstrated higher TOX expression. Furthermore, this subset showed decreased capacity to produce IFN-γ and TNF-α. Expression of TIGIT-ligand CD155 was up-regulated on tumor cells compared with hepatocytes in TFL. Whereas single PD1 blockade preferentially enhanced ex vivo functions of CD8+ TILs from tumors with PD1high CD8+ TILs (high PD1 expressers), co-blockade of TIGIT and PD1 improved proliferation and cytokine production of CD8+ TILs from tumors enriched for PD1int CD8+ TILs (low PD1 expressers). Importantly, ex vivo co-blockade of TIGIT/PD1 improved proliferation, cytokine production, and cytotoxicity of CD8+ TILs compared with single PD1 blockade. CONCLUSIONS: Ex vivo, co-blockade of TIGIT/PD1 improves functionality of CD8+ TILs that do not respond to single PD1 blockade. Therefore co-blockade of TIGIT/PD1 could be a promising immune therapeutic strategy for HCC patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Idoso , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Proteínas HMGB/metabolismo , Células Hep G2 , Humanos , Masculino , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Regulação para Cima
15.
Cell Mol Gastroenterol Hepatol ; 11(2): 407-431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32932015

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play a key role in the cancer process, but the research progress is hampered by the paucity of preclinical models that are essential for mechanistic dissection of cancer cell-CAF interactions. Here, we aimed to establish 3-dimensional (3D) organotypic co-cultures of primary liver tumor-derived organoids with CAFs, and to understand their interactions and the response to treatment. METHODS: Liver tumor organoids and CAFs were cultured from murine and human primary liver tumors. 3D co-culture models of tumor organoids with CAFs and Transwell culture systems were established in vitro. A xenograft model was used to investigate the cell-cell interactions in vivo. Gene expression analysis of CAF markers in our hepatocellular carcinoma cohort and an online liver cancer database indicated the clinical relevance of CAFs. RESULTS: To functionally investigate the interactions of liver cancer cells with CAFs, we successfully established murine and human 3D co-culture models of liver tumor organoids with CAFs. CAFs promoted tumor organoid growth in co-culture with direct cell-cell contact and in a Transwell system via paracrine signaling. Vice versa, cancer cells secrete paracrine factors regulating CAF physiology. Co-transplantation of CAFs with liver tumor organoids of mouse or human origin promoted tumor growth in xenograft models. Moreover, tumor organoids conferred resistance to clinically used anticancer drugs including sorafenib, regorafenib, and 5-fluorouracil in the presence of CAFs, or the conditioned medium of CAFs. CONCLUSIONS: We successfully established murine and human 3D co-culture models and have shown robust effects of CAFs in liver cancer nurturing and treatment resistance.


Assuntos
Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Organoides/patologia , Animais , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Organoides/efeitos dos fármacos , Comunicação Parácrina , Cultura Primária de Células , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Br J Cancer ; 123(2): 196-206, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418992

RESUMO

BACKGROUND: Patients with resected colorectal liver metastasis (CRLM) who display only the desmoplastic histopathological growth pattern (dHGP) exhibit superior survival compared to patients with any non-desmoplastic growth (non-dHGP). The aim of this study was to compare the tumour microenvironment between dHGP and non-dHGP. METHODS: The tumour microenvironment was investigated in three cohorts of chemo-naive patients surgically treated for CRLM. In cohort A semi-quantitative immunohistochemistry was performed, in cohort B intratumoural and peritumoural T cells were counted using immunohistochemistry and digital image analysis, and in cohort C the relative proportions of individual T cell subsets were determined by flow cytometry. RESULTS: One hundred and seventeen, 34, and 79 patients were included in cohorts A, B, and C, with dHGP being observed in 27%, 29%, and 15% of patients, respectively. Cohorts A and B independently demonstrated peritumoural and intratumoural enrichment of cytotoxic CD8+ T cells in dHGP, as well as a higher CD8+/CD4+ ratio (cohort A). Flow cytometric analysis of fresh tumour tissues in cohort C confirmed these results; dHGP was associated with higher CD8+ and lower CD4+ T cell subsets, resulting in a higher CD8+/CD4+ ratio. CONCLUSION: The tumour microenvironment of patients with dHGP is characterised by an increased and distinctly cytotoxic immune infiltrate, providing a potential explanation for their superior survival.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/imunologia , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/genética , Idoso , Biomarcadores Tumorais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia
17.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466274

RESUMO

The use of implants can be hampered by chronic inflammatory reactions, which may result in failure of the implanted device. To prevent such an outcome, the present study examines the anti-inflammatory properties of surface coatings made of either hyaluronic acid (HA) or heparin (Hep) in combination with chitosan (Chi) prepared as multilayers through the layer-by-layer (LbL) technique. The properties of glycosaminoglycan (GAG)-modified surfaces were characterized in terms of surface topography, thickness and wettability. Results showed a higher thickness and hydrophilicity after multilayer formation compared to poly (ethylene imine) control samples. Moreover, multilayers containing either HA or Hep dampened the inflammatory response visible by reduced adhesion, formation of multinucleated giant cells (MNGCs) and IL-1ß release, which was studied using THP-1 derived macrophages. Furthermore, investigations regarding the mechanism of anti-inflammatory activity of GAG were focused on nuclear transcription factor-кB (NF-κB)-related signal transduction. Immunofluorescence staining of the p65 subunit of NF-κB and immunoblotting were performed that showed a significant decrease in NF-κB level in macrophages on GAG-based multilayers. Additionally, the association of FITC-labelled GAG was evaluated by confocal laser scanning microscopy and flow cytometry showing that macrophages were able to associate with and take up HA and Hep. Overall, the Hep-based multilayers demonstrated the most suppressive effect making this system most promising to control macrophage activation after implantation of medical devices. The results provide an insight on the anti-inflammatory effects of GAG not only based on their physicochemical properties, but also related to their mechanism of action toward NF-κB signal transduction.


Assuntos
Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Adesão Celular , Heparina/farmacologia , Ácido Hialurônico/farmacologia , NF-kappa B/metabolismo , Materiais Biocompatíveis/química , Endocitose , Células Gigantes/efeitos dos fármacos , Células Gigantes/fisiologia , Heparina/análogos & derivados , Humanos , Ácido Hialurônico/análogos & derivados , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Transdução de Sinais , Células THP-1
18.
Cells ; 9(1)2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947947

RESUMO

Metabolic reprogramming universally occurs in cancer. Mitochondria act as the hubs of bioenergetics and metabolism. The morphodynamics of mitochondria, comprised of fusion and fission processes, are closely associated with mitochondrial functions and are often dysregulated in cancer. In this study, we aim to investigate the mitochondrial morphodynamics and its functional consequences in human liver cancer. We observed excessive activation of mitochondrial fusion in tumor tissues from hepatocellular carcinoma (HCC) patients and in vitro cultured tumor organoids from cholangiocarcinoma (CCA). The knockdown of the fusion regulator genes, OPA1 (Optic atrophy 1) or MFN1 (Mitofusin 1), inhibited the fusion process in HCC cell lines and CCA tumor organoids. This resulted in inhibition of cell growth in vitro and tumor formation in vivo, after tumor cell engraftment in mice. This inhibitory effect is associated with the induction of cell apoptosis, but not related to cell cycle arrest. Genome-wide transcriptomic profiling revealed that the inhibition of fusion predominately affected cellular metabolic pathways. This was further confirmed by the blocking of mitochondrial fusion which attenuated oxygen consumption and cellular ATP production of tumor cells. In conclusion, increased mitochondrial fusion in liver cancer alters metabolism and fuels tumor cell growth.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/patologia , Feminino , Inativação Gênica , Células HEK293 , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Organoides/patologia , Consumo de Oxigênio
19.
Molecules ; 24(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817679

RESUMO

The root of Gentiana straminea Maxim. (Gentianaceae), is officially listed as "Qin-Jiao" in the Chinese Pharmacopoeia for the treatment of rheumatic arthritis, icteric hepatitis, constipation, pain, and hypertension. To establish the geographical origin traceability in G. straminea, its chemical profiles were determined by a UPLC-Q exactive mass spectrometer, from which 43 compounds were identified by comparing retention times and mass spectrometry. Meanwhile, a pair of isomers (loganin and secologanol) was identified by mass spectrometry based on their fragmentation pathway. A total of 42 samples from difference habitats were determined by an UPLC-Q exactive mass spectrometer and the data were assayed with multivariate statistical analysis. Eight characteristic compounds were identified to determine the geographical origin of the herb. To estimate the key characteristic markers associated with pharmacological function, the inhibiting activities of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophages were examined. This finding is crucial in realizing the determination of botanical origin and evaluating the quality of G. straminea.


Assuntos
Gentiana/metabolismo , Glicosídeos Iridoides/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrometria de Massas , Metabolômica , Análise Multivariada , Óxido Nítrico/metabolismo
20.
BMC Genet ; 20(1): 94, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805867

RESUMO

BACKGROUND: Tea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola. RESULTS: We characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca. oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi. CONCLUSION: This study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.


Assuntos
Camellia/microbiologia , Colletotrichum/patogenicidade , Proteínas Serina-Treonina Quinases/genética , Carbono/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Filogenia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA