RESUMO
Autophagy, a well-observed intracellular lysosomal degradation process, is particularly important to the cell viability in diabetic cardiomyopathy (DCM). Peroxidasin (PXDN) is a heme-containing peroxidase that augments oxidative stress and plays an essential role in cardiovascular diseases, while whether PXDN contributes to the pathogenesis of DCM remains unknown. Here we reported the suppression of cell viability and autophagic flux, as shown by autophagosomes accumulation and increased expression level of LC3-II and p62 in cultured H9C2 and human AC16 cells that treated with 400 µM palmitate acid (PA) for 24 h. Simultaneously, PXDN protein level increased. Moreover, cell death, autophagosomes accumulation as well as increased p62 expression were suppressed by PXDN silence. In addition, knockdown of PXDN reversed PA-induced downregulated forkhead box-1 (FoxO1) and reduced FoxO1 phosphorylation, whereas did not affect AKT phosphorylation. Not consistent with the effects of si-PXDN, double-silence of PXDN and FoxO1 significantly increased cell death, suppressed autophagic flux and declined the level of FoxO1 and PXDN, while the expression of LC3-II was unchanged under PA stimulation. Furthermore, inhibition of FoxO1 in PA-untreated cells induced cell death, inhibited autophagic flux, and inhibited FoxO1 and PXDN expression. Thus, we come to conclusion that PXDN plays a key role in PA-induced cell death by impairing autophagic flux through inhibiting FoxO1, and FoxO1 may also affect the expression of PXDN. These findings may develop better understanding of potential mechanisms regarding autophagy in insulin-resistant cardiomyocytes.
Assuntos
Proteína Forkhead Box O1/metabolismo , Resistência à Insulina/fisiologia , Miócitos Cardíacos/metabolismo , Peroxidases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ratos , Transdução de Sinais , TransfecçãoRESUMO
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Assuntos
Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , RNA Longo não Codificante/genética , RNA Neoplásico/química , Animais , Antineoplásicos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Neoplásico/genética , Transdução de SinaisRESUMO
Schistosomiasis is a devastating disease caused by Schistosoma infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has emerged as a candidate vaccine component against Schistosoma japonicum, but only confers partial protection. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates T cell activation and shows negative effects on vaccine-induced immune protection; however, its potential influence on the protective effects of a GAPDH vaccine against S. japonicum and the underlying mechanism remain unclear. In this study, we established a mouse model of S. japonicum infection, and the mice were randomly divided into uninfected, infected control, anti-CTLA-4 monoclonal antibody (anti-CTLA-4 mAb), GAPDH, and GAPDH combined with anti-CTLA-4 mAb groups to compare the protective effects against infection and the consequent tissue damage. The worm reduction rate in the GAPDH-treated infected mice was 26.58%, which increased to 54.61% when combined with anti-CTLA-4 mAb. The frequency of regulatory T cells (Tregs) was significantly higher in the anti-CTLA-4 mAb group and was lower in the GAPDH group. However, both anti-CTLA-4 mAb and GAPDH elevated the levels of the cytokines IFN-γ, IL-2, IL-4, and IL-5 in the spleens of infected mice, and their combination further enhanced cytokine production. The diameter of egg granuloma in the anti-CTLA-4 mAb group and combined treatment group increased significantly compared to that of the other groups. These results suggest that anti-CTLA-4 mAb can be used as an adjuvant to enhance the immune protection of the GAPDH vaccine via inducing the Th1 immune response, although this comes at the cost of enhanced body injury.
Assuntos
Antígenos de Helmintos/imunologia , Antígeno CTLA-4/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Vacinas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/prevenção & controle , Baço/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
OBJECTIVE: To investigate the subchronic lung injury induced by nano nickel oxide( nano NiO) and its mechanism from the view of nitrative stress in rats. METHODS: A total of 40 adult male Wistar rats were randomly divided into 5 groups, control group( normal saline), 0. 015, 0. 06 and 0. 24 mg / kg nano NiO groups and 0. 24 mg / kg micro NiO group. Rats received intratracheally instilled nano NiO, micro NiO and normal saline twice a week for 6 weeks, respectively. All rats were sacrificed after the exposure to obtain lung tissues. HE staining was used to observe the lung pathological changes. The content of nitric oxide, and the activities of total nitric oxide synthase( TNOS) and inducible nitric oxide synthase( iNOS) in pulmonary tissue homogenate were measured by microplate reader. The levels of interleukin-2( IL-2), transforminggrowth factor-beta( TGF-ß), interferon-gamma( IFN-γ) and 8-hydroxy-2'-deoxyguanosine( 8-OHd G) in serum were detected by enzyme-linked immunosorbent assay( ELISA). RESULTS: The results of lung histopathology showed that the widened alveolar speta, inflammatory infiltration and nanoparticles deposition increased with the increasing dosage of nano NiO. Compared to control group, the content of NO and the activities of TNOS and iNOS in 0. 24 mg / kg nano NiO group increased in lung homogenate( P < 0. 05). The levels of IL-2, TGF-ß and IFN-γ in nano NiO 0. 06 and 0. 24 mg /kg group were higher than that of control group, and the level of 8-OHd G increased in nano NiO 0. 24 mg / kg group when compared to control group in serum( P < 0. 05). Compared to micro NiO group, the levels of NO and iNOS in lung homogenate, and the serum levels of IL-2 and 8-OHd G increased after exposed to 0. 24 mg / kg nano NiO in rats( P < 0. 05). CONCLUSION: Nano NiO can lead to lung injury in rats which may be related with nitrative stress reaction based on pulmonary inflammation.
Assuntos
Interleucina-2/sangue , Lesão Pulmonar/induzido quimicamente , NF-kappa B/metabolismo , Níquel/toxicidade , Óxido Nítrico Sintase Tipo II , Animais , Pulmão , Masculino , Óxido Nítrico , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The purpose of the present study was to examine the pharmacokinetic characteristics of erianin (2-methoxy-5-[2-(3,4,5-trimethoxyphenyl)-ethyl]-phenol, CAS 95041-90-0), a nature product extracted from Dendrobium chrysotoxum, having notable antitumour activity, after intravenous injection of erianin fat emulsion to beagle dogs. An HPLC-MS method was developed to analyze the erianin levels in dog plasma and validated in a pharmacokinetic study. Plasma profiles were obtained after intravenous injection of erianin fat emulsion at the doses 7.5, 15 and 30 mg/kg. The elimination half-life (t(1/2)) values for erianin were estimated to be 1.41+/- 0.31, 1.66 +/- 0.19, 1.60 0.28 h, while the mean area under concentration-time curve (AUC(0-infinity)) values were 1021.3 +/- 373.7, 2305.1 +/- 597.0 and 3952.1 +/- 378.2 ng x h/ml, respectively. In conclusion, the present observations indicated that erianin plasma concentrations were clearly dose-proportional for the dose range studied. There was no gender difference in pharmacokinetics for erianin in male and female dogs.