Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 250: 116094, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38308943

RESUMO

Upconversion nanoparticles (UCNPs)-mediated in-situ imaging and synergistic therapy may be an effective approach against tumors. However, it remains a challenge to improve therapeutic index and reduce toxicity. Here, we investigated the construction process of a three-layer (core-shell-shell) upconversion nano-jelly hydrogels (UCNJs) coated with stimulus-responsive deoxyribonucleic acid chains, aiming to achieve selective recognition of tumor cells and controlled release of drugs. The UCNJs have a NaYF4: Yb, Er core with an outer silica shell with embedded methylene blue (MB). Then the outer layer was coated with mesoporous silica and loaded with doxorubicin (DOX). Finally, polyacrylamide chains containing anti-adenosine triphosphate (ATP) aptamer sequences were assembled layer-by-layer on the surface of particles to form DNA hydrogels to lock DOX. Under near-infrared irradiation, green light (540 nm) emitted by UCNJs can be used for imaging, while red light (660 nm) is absorbed by MB. The latter generates singlet oxygen, resulting in photodynamic therapy (PDT) effect to inhibit tumor growth. UCNJs also can recognize ATP in tumor cells, leading to hydrogel degradation and DOX release. The hydrogel coating can increase drug-carrying capacity of mesoporous materials and improve biocompatibility. Therefore, the UCNJs has great potential advantages for application in the field of cancer diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fotoquimioterapia/métodos , Dióxido de Silício , Hidrogéis
2.
Food Chem ; 439: 138102, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100873

RESUMO

Ochratoxin A (OTA) is a potent carcinogen, and is among the most dangerous mycotoxins in agricultural products. In this study, an ultrasensitive dual-mode immunosensor was developed for naked-eye and fluorescence detection of OTA based on Ag-doped core-shell nanohybrids (Ag@CSNH). Complete antigen-labeled Ag@CSNH (CA-Ag@CSNH) were used as a competitive bind and dual-mode probe. The diffused doping structure of CA-Ag@CSNH provided improved stability, color and fluorescence quencher performance. Antibodies modified magnetic beads were used as a capture probe. The competitive binding between OTA and CA-Ag@CSNH produced both color change and fluorescence quenching. Ultraviolet and fluorescence intensitie correlated linearly with OTA concentration ranges of 0.03-3 ng/mL and 10-10000 pg/mL, and limits of detection of 0.0235 ng/mL and 0.9921 pg/mL, respectively. The practical applicability of proposed strategy was demonstrated by analysis of OTA in spiked corn, soybean and flour samples. This study offers a new insight on multi-mode platforms for various applications.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Ocratoxinas , Imunoensaio , Ocratoxinas/análise , Micotoxinas/análise , Limite de Detecção
3.
J Hazard Mater ; 449: 131044, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821893

RESUMO

Nano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal. In the present study, we further explored the potential application of CRISPR-Cas12a and developed a CRISPR-Cas12a-based fluorescence/colorimetric biosensor (UCNPs-Cas12a/hydrogel-MOF-Cas12a) that provides an efficient targeting system for small molecules and protein targets. These two sensors yield multiple types of signal outputs by converting the target molecule into a deoxyribonucleic acid (DNA) signal input system using aptamers, amplifying the DNA signal by catalyzed hairpin assembly (CHA), and then combining CRISPR-Cas12a with various nanomaterials. UCNPs-Cas12a/hydrogel-MOF-Cas12a exhibited prominent sensitivity and stability for the detection of estradiol (E2) and prostate-specific antigen (PSA), and was successfully applied for the detection of these targets in milk and serum samples. A major advantage of the hydrogel-MOF-Cas12a system is that the signal output can be observed directly. When combined with aptamers and nanomaterials, CRISPR-Cas12a can be used to target multiple targets, with a diverse array of signal outputs. Our findings create a foundation for the development of CRISPR-Cas12a-based technologies for application in the fields of food safety, environmental monitoring, and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Masculino , Colorimetria , Sistemas CRISPR-Cas , DNA , Monitoramento Ambiental , Hidrogéis , Oligonucleotídeos , Feminino
4.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807849

RESUMO

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Assuntos
Antivirais , Nucleosídeos de Pirimidina , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/toxicidade , COVID-19/virologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Humanos , Masculino , Camundongos , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/farmacologia , Nucleosídeos de Pirimidina/toxicidade , Células Vero
5.
Antiviral Res ; 182: 104908, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798602

RESUMO

We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 µM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease.


Assuntos
Antivirais/farmacologia , Artesunato/uso terapêutico , Reposicionamento de Medicamentos , Ebolavirus/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Naftiridinas/uso terapêutico , Quinacrina/uso terapêutico , Tilorona/uso terapêutico , Antivirais/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Células MCF-7 , Aprendizado de Máquina , Internalização do Vírus/efeitos dos fármacos
6.
J Chromatogr A ; 1615: 460766, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-31839357

RESUMO

A novel magnetic metal organic framework composite (Fe3O4@MOF-808) was synthesized by a facile solvothermal method and applied as an adsorbent for the magnetic solid phase extraction (MSPE) of benzoylurea insecticides (BUs) from tea beverages and juice samples. The prepared materials were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), vibrating sample magnetometry measurements and N2 adsorption-desorption experiments. The adsorption (adsorbent amount, extraction time and pH) and elution (elution solvent, elution volume and time) parameters were investigated in detail. Under the optimized experimental conditions, Fe3O4@MOF-808 exhibited simpler and better reusability than commercial C18, with an equivalent adsorption effect. Notably, π-π interactions, hydrophobic interactions and hydrogen bonding interactions contributed to the good adsorption of BUs by Fe3O4@MOF-808. Finally, a simple and sensitive method was established using Fe3O4@MOF-808-based MSPE coupled with high-performance liquid chromatography (HPLC). It provided low limits of detection (0.04-0.15 ng/mL), wide linear ranges (0.15-50 ng/mL) and satisfactory recoveries (84.6-98.3%). The proposed method was successfully applied for the fast and sensitive determination of BUs in tea beverages and juice samples.


Assuntos
Compostos Férricos/química , Análise de Alimentos/métodos , Inseticidas/isolamento & purificação , Extração em Fase Sólida/métodos , Chá/química , Ureia/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão , Inseticidas/análise , Limite de Detecção , Magnetismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia/análise
7.
PLoS Pathog ; 14(9): e1007322, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265711

RESUMO

Lassa fever virus (LASV) is endemic in West Africa and causes severe hemorrhagic fever and sensorineural hearing loss. We identified a small molecule inhibitor of LASV and used it to analyze the mechanism of entry. Using a photo-reactive analog that retains antiviral activity as a probe, we identified the inhibitor target as lysosome-associated membrane protein 1 (LAMP1), a host factor that binds to the LASV glycoprotein (GP) during infection. We found that LAMP1 binding to LASV GP is cholesterol-dependent, and that the inhibitor blocks infection by competing with cholesterol in LAMP1. Mutational analysis of a docking-based model identified a putative inhibitor binding site in the cholesterol-binding pocket within the LAMP1 domain that binds GP. These findings identify a critical role for cholesterol in LASV entry and a potential target for therapeutic intervention.


Assuntos
Colesterol/metabolismo , Vírus Lassa/fisiologia , Vírus Lassa/patogenicidade , Proteínas de Membrana Lisossomal/fisiologia , Receptores Virais/fisiologia , Adamantano/análogos & derivados , Adamantano/química , Adamantano/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Febre Lassa/etiologia , Vírus Lassa/efeitos dos fármacos , Proteínas de Membrana Lisossomal/antagonistas & inibidores , Proteínas de Membrana Lisossomal/genética , Modelos Moleculares , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus/efeitos dos fármacos
8.
PLoS One ; 13(3): e0194868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566060

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) presents an emerging threat to public health worldwide by causing severe respiratory disease in humans with high virulence and case fatality rate (about 35%) since 2012. Little is known about the pathogenesis and innate antiviral response in primary human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) upon MERS-CoV infection. In this study, we assessed MERS-CoV replication as well as induction of inflammatory cytokines and chemokines in MDMs and immature and mature MDDCs. Immature MDDCs and MDMs were permissive for MERS-CoV infection, while mature MDDCs were not, with stimulation of proinflammatory cytokine and chemokine upregulation in MDMs, but not in MDDCs. To further evaluate the antiviral activity of well-defined drugs in primary antigen presenting cells (APCs), three compounds (chloroquine, chlorpromazine and toremifine), each with broad-spectrum antiviral activity in immortalized cell lines, were evaluated in MDMs and MDDCs to determine their antiviral effect on MERS-CoV infection. While chloroquine was not active in these primary cells, chlorpromazine showed strong anti-MERS-CoV activity, but it was associated with high cytotoxicity narrowing the potential window for drug utilization. Unlike in established cells, toremifene had marginal activity when tested in antigen presenting cells, with high apparent cytotoxicity, also limiting its potential as a therapeutic option. These results demonstrate the value of testing drugs in primary cells, in addition to established cell lines, before initiating preclinical or clinical studies for MERS treatment and the importance of carefully assessing cytotoxicity in drug screen assays. Furthermore, these studies also highlight the role of APCs in stimulating a robust protective immune response to MERS-CoV infection.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Células Apresentadoras de Antígenos/fisiologia , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Macrófagos/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Monócitos/fisiologia , Resultado do Tratamento , Células Vero
9.
J Infect Dis ; 215(9): 1416-1420, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368541

RESUMO

Previous studies have demonstrated little efficacy of interferons (IFNs) in animal models of Ebola virus disease. However, these studies were limited to a small number of type I IFNs and, during the most recent outbreak of Ebola virus, questions regarding the suitability of the animal models to evaluate IFNs were raised. To address the potential that anti-Ebola virus activity was overlooked, type I and type II IFNs (α-2a, α-2b, -ß, -γ, and -universal) were tested in a variety of cell types (Vero E6, Huh 7 cells, and human macrophages). IFNs are weak inhibitors of Ebola virus Makona in these cell lines.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Interferon beta/farmacologia , Interferon gama/farmacologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Células Vero
10.
PLoS Negl Trop Dis ; 11(4): e0005540, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28403145

RESUMO

Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) is a lipid kinase involved in endosome maturation that emerged from a haploid genetic screen as being required for Ebola virus (EBOV) infection. Here we analyzed the effects of apilimod, a PIKfyve inhibitor that was reported to be well tolerated in humans in phase 2 clinical trials, for its effects on entry and infection of EBOV and Marburg virus (MARV). We first found that apilimod blocks infections by EBOV and MARV in Huh 7, Vero E6 and primary human macrophage cells, with notable potency in the macrophages (IC50, 10 nM). We next observed that similar doses of apilimod block EBOV-glycoprotein-virus like particle (VLP) entry and transcription-replication competent VLP infection, suggesting that the primary mode of action of apilimod is as an entry inhibitor, preventing release of the viral genome into the cytoplasm to initiate replication. After providing evidence that the anti-EBOV action of apilimod is via PIKfyve, we showed that it blocks trafficking of EBOV VLPs to endolysosomes containing Niemann-Pick C1 (NPC1), the intracellular receptor for EBOV. Concurrently apilimod caused VLPs to accumulate in early endosome antigen 1-positive endosomes. We did not detect any effects of apilimod on bulk endosome acidification, on the activity of cathepsins B and L, or on cholesterol export from endolysosomes. Hence by antagonizing PIKfyve, apilimod appears to block EBOV trafficking to its site of fusion and entry into the cytoplasm. Given the drug's observed anti-filoviral activity, relatively unexplored mechanism of entry inhibition, and reported tolerability in humans, we propose that apilimod be further explored as part of a therapeutic regimen to treat filoviral infections.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Transporte Biológico , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Hidrazonas , Lisossomos/metabolismo , Macrófagos/virologia , Marburgvirus/fisiologia , Nocodazol/farmacologia , Pirimidinas , Toremifeno/farmacologia , Células Vero
11.
PLoS One ; 11(11): e0166318, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902714

RESUMO

In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 µM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 µg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.


Assuntos
Fármacos Anti-HIV/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Lamivudina/farmacologia , Zidovudina/farmacologia , Animais , Chlorocebus aethiops , Ebolavirus/isolamento & purificação , Cobaias , Células HeLa , Doença pelo Vírus Ebola/virologia , Humanos , Macrófagos , Projetos Piloto , Células Vero , Replicação Viral/efeitos dos fármacos
12.
Wei Sheng Yan Jiu ; 34(2): 227-30, 2005 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-15952671

RESUMO

People have paid a more attention to the pesticides residues, so the rapid detection method is required. In this paper the application of molecular imprinting technique on the detection of pesticides residues was reviewed, including recognition principles, preparation, current applications, problems and its future.


Assuntos
Técnicas de Química Analítica/métodos , Resíduos de Praguicidas/análise , Técnicas Biossensoriais , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA