Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Gastroenterol ; 24(1): 302, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243020

RESUMO

OBJECTIVE: To evaluate and compare the efficacy and safety of Endoscopic Nasobiliary Drainage (ENBD) and Percutaneous Transhepatic Cholangiography Drainage (PTCD) in patients with advanced Hilar Cholangiocarcinoma (HCCA) through a meta-analysis of clinical studies. METHODS: We searched Chinese and English databases, including China National Knowledge Infrastructure (CNKI), Wanfang database, PubMed, Embase, Scopus, and Web of Science, for relevant literatures on PTCD and ENBD for advanced HCCA clinical trials. Two investigators independently screened the literatures, and the quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). The primary endpoint was the success rate of biliary drainage operation, while secondary endpoints included Total Bilirubin (TBIL) change, acute pancreatitis, biliary tract infection, hemobilia, and other complications. R software was used for data analysis. RESULTS: A comprehensive database search, based on predefined inclusion and exclusion criteria, yielded 26 articles for this study. Analysis revealed that PTCD had a significantly higher success rate than ENBD [OR (95% CI) = 2.63 (1.98, 3.49), Z=6.70, P<0.05]. PTCD was also more effective in reducing TBIL levels post-drainage [SMD (95%CI) =-0.13 (-0.23, -0.03), Z=-2.61, P<0.05]. While ENBD demonstrated a lower overall complication rate [OR (95%CI) = 0.60 (0.43, 0.84), Z=-2.99, P<0.05], it was associated with a significantly lower incidence of post-drainage biliary hemorrhage compared to PTCD [OR=3.02, 95%CI: (1.94-4.71), Z= 4.89, P<0.01]. CONCLUSIONS: This meta-analysis compares the efficacy and safety of ENBD and PTCD for palliative treatment of advanced HCCA. While both are effective, PTCD showed superiority in achieving successful drainage, reducing TBIL, and lowering the incidence of acute pancreatitis and biliary infections. However, ENBD had a lower risk of post-drainage bleeding. Clinicians should weigh these risks and benefits when choosing between ENBD and PTCD for individual patients. Further research is needed to confirm these findings and explore long-term outcomes.


Assuntos
Neoplasias dos Ductos Biliares , Drenagem , Tumor de Klatskin , Humanos , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/complicações , Colangiografia/efeitos adversos , Colangiografia/métodos , Drenagem/métodos , Drenagem/efeitos adversos , Tumor de Klatskin/cirurgia , Tumor de Klatskin/complicações , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Resultado do Tratamento
2.
J Agric Food Chem ; 72(29): 16323-16333, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990278

RESUMO

Abrus cantoniensis Hance is a vegetative food and can be used as a folk beverage or soup to clear liver toxins and prevent liver damage. However, the components and effects of A. cantoniensis Hance in alcohol-induced liver injury were unknown. This study aimed to obtain abundant phytochemicals from A. cantoniensis Hance and identify the potency of the isolates in preventing alcohol-induced liver injury. Alcohol-stimulated AML12 cells and Lieber-DeCarli diet-fed mice were used to establish in vitro and in vivo models, respectively. Our findings indicated that flavonoid glycosides, especially AH-15, could significantly alleviate alcohol-induced liver injury by inhibiting oxidative stress. Furthermore, we demonstrated that AH-15 inhibited ferroptosis induced by lipid peroxidation. Mechanically, we found that AH-15 regulated nuclear factor erythroid 2-related factor 2 (NRF2) expression via activation of AMP-activated protein kinase (AMPK) signaling. These results indicate that A. cantoniensis Hance is a great potential functional food for alleviating alcohol-induced liver injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Abrus , Ferroptose , Flavonoides , Glicosídeos , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Extratos Vegetais , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Camundongos , Glicosídeos/farmacologia , Glicosídeos/química , Ferroptose/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/química , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Abrus/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular
3.
Integr Cancer Ther ; 23: 15347354241261977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907709

RESUMO

OBJECTIVE: To observe the clinical efficacy of Chinese herbal medicine combined with Liuzijue exercise on the physiological symptoms and quality of life (QoL) in postoperative patients with early-stage lung cancer. METHODS: One hundred and eighty-three lung cancer patients who underwent video-assisted thoracoscopic surgery (VATS) were categorize into either a traditional Chinese medicine treatment group (CM) or a control group (non-traditional Chinese medicine treatment, NC), among whom 73 underwent Chinese herbal medicine and Liuzijue therapy, while 110 underwent no comprehensive treatment with traditional Chinese medicine. The propensity score matching (PSM) method with a 1:2 ratio was used to balance the baseline characteristics and evaluate the efficacy of CM in improving postoperative symptoms and QoL. RESULTS: Cough, dyspnea, chest pain, and fatigue were the most common clinical symptoms after VATS. Except for chest pain, they were all correlated with the scope of operation (P < .05). After PSM, 165 patients were identified in the matched cohort, and the covariates of gender, age, operative site, and scope of operation were balanced between the 2 groups (P > .05). In the domain of global health status, the improvement in QoL in CM was greater than that in NC (6.06 ± 15.83 vs -1.06 ± 14.68, P = .005). In terms of symptoms, improvements in cough (1.69 ± 3.15 vs 0.38 ± 2.63, P = .006), dyspnea during climbing stairs (-10.30 ± 16.82 vs -1.82 ± 17.97, P = .004), and pain (-0.76 ± 1.32 vs -0.08 ± 1.31, P = .002) in CM were better than in NC. CONCLUSION: Comprehensive treatment with traditional Chinese medicine (TCM) can provide therapeutic benefits in physiological rehabilitation after VATS for cancer.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Pontuação de Propensão , Qualidade de Vida , Cirurgia Torácica Vídeoassistida , Humanos , Masculino , Feminino , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/cirurgia , Pessoa de Meia-Idade , Cirurgia Torácica Vídeoassistida/métodos , Estudos Prospectivos , Idoso , Terapia por Exercício/métodos , Medicina Tradicional Chinesa/métodos , Resultado do Tratamento , Terapia Combinada
4.
Int J Nanomedicine ; 19: 4803-4834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828205

RESUMO

The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , RNA Circular , RNA Interferente Pequeno , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Circular/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Animais , RNA de Interação com Piwi
5.
ACS Sens ; 9(3): 1290-1300, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38478991

RESUMO

With the emergence of microRNA (miRNA) as a promising biomarker in cancer diagnosis, it is significant to develop multiple analyses of miRNAs. However, it still faces difficulties in ensuring the sensitivity and accuracy during multiplex detection owing to the low abundance and experimental deviation of miRNAs. In this work, a flexible-arranged biomimetic array integrated with parallel entropy-driven circuits (EDCs) was developed for ultrasensitive, multiplex, reliable, and high-throughput detection of miRNAs. The biomimetic array was fabricated by arrangement of various photonic crystals (PCs) for adjustable photonic band gaps (PBGs) and specific fluorescence enhancement. Meanwhile, two cancer-related miRNAs and one reference miRNA were introduced as multiple analytes as a proof-of-concept. The parallel EDCs with negligible crosstalk were designed based on the modular property. Because of the one-to-one match between the emitted fluorescence of parallel EDCs and the PBGs of the flexible-arranged biomimetic array, the generated fluorescence signal triggered by target miRNAs can be enhanced on the corresponding domain of the array. Furthermore, the amplified signal of the array was detected with high-throughput scanning, which could reveal specific information on cancer-related miRNAs as well as reference miRNA, enhancing the abundance and reliability of the analysis. The proposed array has the merits of a modular design, flexible deployment, simple operation (nonenzymatic and isothermal), improved accuracy, high sensitivity, and multiplex analysis, showing potential in disease diagnosis.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/análise , Entropia , Reprodutibilidade dos Testes , Biomimética , Neoplasias/diagnóstico
6.
Adv Mater ; 36(23): e2314132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353332

RESUMO

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.


Assuntos
Nanopartículas , Pró-Fármacos , Radiossensibilizantes , Fatores de Transcrição , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Fatores de Transcrição/metabolismo , Nanopartículas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Neuropilina-1/metabolismo , Proteínas que Contêm Bromodomínio
7.
Sci Rep ; 13(1): 21491, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057372

RESUMO

The mid-eastern segment of the Qilianshan fault zone (QLF) on the northeastern margin of the Qinghai-Tibet Plateau is considered one of the key seismic hazard areas. The Zhangye Ms5.0 earthquake and Menyuan Ms6.9 earthquake are the two Ms ≥ 5.0 earthquakes in recent years. The spatio-temporal evolution of Rn across the fault before the two Ms ≥ 5.0 earthquakes were explored by combining a solid seismogenic model and numerical simulation results in this study. The results demonstrates the spatial distribution of Rn concentration intensity varies over time, indicating the evolving characteristics of fracture zone activity. The time-series variation characteristics are closely related the Zhangye Ms5.0 earthquake and Menyuan Ms6.9 earthquake. Overall, in the seismic source area and surrounding medium area of Zhangye Ms5.0 earthquake, the soil gas Rn anomaly across faults characterized by a turning upward trend after continuous decline. The closer to the source area, the more obvious the upward trend. For Menyuan Ms6.9 earthquake, the survey line (HT1) located in the main fracture zone of the earthquake and the survey line (HT7,30km from the epicenter) closer to the epicenter also showed a similar trend, while the other measurement lines in far-field exhibit declining trend before the Menyuan Ms6.9 earthquake. Therefore, the continuous decline trend of soil gas may be crucial information for medium-term earthquake preparation in the seismogenic zone, and the trend of turning upward after continuous decline is a significant signal of short-term seismogenic event in far-field. This research could improve the understanding of the anomalous features of soil gas precursors and tracking the active sections of the fault. According to the model, the earthquake area canseismic source area, the surrounding medium area be divided into three sections: the seismic source area, the surrounding medium area, and the fracture fragmentation area.

8.
Signal Transduct Target Ther ; 8(1): 412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884527

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.


Assuntos
Doenças Cardiovasculares , Humanos , Adolescente , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Adenosina/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/metabolismo
9.
Nat Commun ; 14(1): 5350, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660174

RESUMO

Tumor metastases are considered the leading cause of cancer-associated deaths. While clinically applied drugs have demonstrated to efficiently remove the primary tumor, metastases remain poorly accessible. To overcome this limitation, herein, the development of a theranostic nanomaterial by incorporating a chromophore for imaging and a photosensitizer for treatment of metastatic tumor sites is presented. The mechanism of action reveals that the nanoparticles are able to intervene by local generation of cellular damage through photodynamic therapy as well as by systemic induction of an immune response by immunotherapy upon inhibition of the mTOR signaling pathway which is of crucial importance for tumor onset, progression and metastatic spreading. The nanomaterial is able to strongly reduce the volume of the primary tumor as well as eradicates tumor metastases in a metastatic breast cancer and a multi-drug resistant patient-derived hepatocellular carcinoma models in female mice.


Assuntos
Neoplasias Hepáticas , Fotoquimioterapia , Feminino , Animais , Camundongos , Medicina de Precisão , Transdução de Sinais , Serina-Treonina Quinases TOR , Imunoterapia
10.
Commun Biol ; 6(1): 805, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532777

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases , Proteínas Quinases Associadas a Fase S , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
11.
J Exp Clin Cancer Res ; 42(1): 160, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415190

RESUMO

BACKGROUND: Endothelial-mesenchymal transition (EndoMT) is an emerging adaptive process that modulates lymphatic endothelial function to drive aberrant lymphatic vascularization in the tumour microenvironment (TME); however, the molecular determinants that govern the functional role of EndoMT remain unclear. Here, we show that cancer-associated fibroblast (CAF)-derived PAI-1 promoted the EndoMT of lymphatic endothelial cells (LECs) in cervical squamous cell carcinoma (CSCC). METHODS: Immunofluorescent staining of α-SMA, LYVE-1 and DAPI were examined in primary tumour samples obtained from 57 CSCC patients. Assessment of cytokines secreted by CAFs and normal fibroblasts (NFs) was performed using human cytokine antibody arrays. The phenotype of EndoMT in lymphatic endothelial cells (LECs), gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA or western blotting. The function of lymphatic endothelial monolayers was examined by transwell, tube formation assay, transendothelial migration assay in vitro. Lymphatic metastasis was measured using popliteal lymph node metastasis model. Furthermore, association between PAI-1 expression and EndoMT in CSCC was analyzed by immunohistochemistry. The Cancer Genome Atlas (TCGA) databases was used to assess the association of PAI-1 with survival rate in CSCC. RESULTS: CAF-derived PAI-1 promoted the EndoMT of LECs in CSCC. LECs undergoing EndoMT could initiate tumour neolymphangiogenesis that facilitated cancer cell intravasation/extravasation, which in turn promoted lymphatic metastasis in CSCC. Mechanistically, PAI-1 activated the AKT/ERK1/2 pathways by directly interacting with low-density lipoprotein receptor-related protein (LRP1), thereby leading to elevated EndoMT activity in LECs. Blockade of PAI-1 or inhibition of LRP1/AKT/ERK1/2 abrogated EndoMT and consequently attenuated CAF-induced tumour neolymphangiogenesis. Furthermore, clinical data revealed that increased PAI-1 levels positively correlated with EndoMT activity and poor prognosis in CSCC patients. CONCLUSION: Our data indicate that CAF-derived PAI-1 acts as an important neolymphangiogenesis-initiating molecular during CSCC progression through modulating the EndoMT of LECs, resulting in promotion of metastasis ability in primary site. PAI-1 could serve as an effective prognostic biomarker and therapeutic target for CSCC metastasis.


Assuntos
Fibroblastos Associados a Câncer , Células Endoteliais , Feminino , Humanos , Movimento Celular/genética , Células Endoteliais/metabolismo , Metástase Linfática , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
12.
J Environ Radioact ; 264: 107190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182472

RESUMO

The Xiahe Ms5.7 earthquake occurred in Xiahe county, Gannan prefecture, China (35.10°N, 102.69°E) on October 28, 2019, with a source depth of 10 km. This study investigates the spatial and temporal evolution characteristics of cross-fault soil gas concentrations prior to the Xiahe Ms5.7 earthquake by analyzing Rn, Hg, H2, and CO2 data collected from 11 profiles across the northern margin of the West Qinling fault zone from 2016 to 2019. The spatial distribution of these gases showed varying trends, with Rn concentration intensity decreasing from the Wushan segment to the east and west sections, while Hg, H2, and CO2 all broke the trend in the West Qinling fault zone's northern margin. The soil gas concentration intensity demonstrated a significant response to the Xiahe Ms5.7 earthquake, particularly in the west Ganjia sections. By integrating the seismogenic model and numerical simulation results, we explored the physical mechanism underlying these abnormal trends. Our findings suggest that the continuous decline characteristic of fault gas could be a valuable indicator of fracture tectonic activity, while an upward trend after continuous decline may signal a medium and short-term seismogenic event in the source area. These results provide a foundation for improved tracking of earthquake location and timing in a fault zone through cross-fault soil gas methods, highlighting the importance of enhancing deep fluid flow monitoring and seismogenic model research in fault zones.


Assuntos
Terremotos , Mercúrio , Monitoramento de Radiação , Radônio , Solo , Dióxido de Carbono , Radônio/análise , China , Gases , Mercúrio/análise
13.
J Cancer Res Clin Oncol ; 149(11): 8649-8654, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103569

RESUMO

BACKGROUND: There is no research to prove the association between irritability and lung cancer, our study performed a Mendelian randomization (MR) approach to elucidate the causal relationship of irritability with lung cancer risk. METHODS: Genome-wide association studies (GWAS) data of irritability, lung cancer and gastroesophageal reflux disease (GERD) were downloaded from a public database for two-sample MR analysis. Independent single-nucleotide polymorphisms (SNPs) associated with irritability and GERD were selected as instrumental variables (IVs). Inverse variance weighting (IVW) and weighted median method were used to analyze causality. RESULTS: There is an association between irritability and lung cancer risk (ORIVW = 1.01, 95% CI = [1.00, 1.02], P = 0.018; ORweighted median = 1.01, 95% CI = [1.00, 1.02], P = 0.046), and GERD might account for about 37.5% of the association between irritability and lung cancer. CONCLUSIONS: This study confirmed the causal effect between irritability and lung cancer through MR analysis, and found that GERD played an essential mediating role in this relationship, which can partly indicate the role of the "inflammation-cancer transformation" process in lung cancer.


Assuntos
Refluxo Gastroesofágico , Neoplasias Pulmonares , Humanos , Análise de Mediação , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único
14.
Adv Mater ; 35(28): e2300048, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37016274

RESUMO

Selective activation of Pt(IV) prodrugs within tumors is particularly attractive because of their low damage to normal tissues. However, current common activation via chemical/photoreduction of Pt(IV) prodrugs into Pt(II) counterparts is limited by undesirable spatial-temporal control over this reduction process and the ineffective tissue penetration depth of undesirable light. Here, a pseudo-conjugated-polymer is designed via Stille polymerization, resulting in PSP-Pt with a Pt(IV) prodrug of oxaliplatin (Oxa(IV)) in the polymer main chain that can be activated by NIR-II light. PSP-Pt can co-assemble with a commercially available lipid polymer, namely mPEG2k -DSPE, into NPPSP-Pt . Under 1064 nm light irradiation, NPPSP-Pt can be photoactivated to accelerate the Pt(IV) reduction to release oxaliplatin, thereby killing the cancer cells by photothermal effect and chemo-immunotherapy inside a mouse model with CT26 colon cancer. This work reports the application of NIR-II light for accelerating Pt(IV) reduction for cancer tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Polímeros/uso terapêutico , Oxaliplatina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
15.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36765782

RESUMO

Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.

16.
Small Methods ; 7(5): e2200888, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36446643

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to conventional therapies, including chemo-, radio-, and immunotherapy. In this study, it is first determined that a combination of dihydroartemisinin (DHA) and RSL-3 (a glutathione peroxidase 4 (GPX4) inhibitor) markedly induced ferroptosis of PDAC tumor cells. A mechanistic study revealed that DHA can react with iron ions to generate carbon radicals and deplete intracellular glutathione, thereby cumulatively triggering the lipid peroxidation of tumor cells with RSL-3-mediated GPX4 inhibition. A DHA-conjugated amphiphilic copolymer is subsequently synthesized, and intracellular acidity and oxidation dual-responsive DHA nanoparticles are further engineered for the tumor-specific co-delivery of DHA and RSL-3. The resultant nanoparticles (PDBA@RSL-3) efficiently induce ferroptosis of tumor cells in the Panc02 tumor-bearing immune-deficient mouse model, and elicit T-cell-based antitumor immunity in the immune-competent mouse model. The combination of PDBA@RSL-3 nanoparticles and programmed death ligand 1 blockade therapy efficiently inhibits PDAC tumor growth in the immune-competent mouse models. This study may provide novel insights for treatment of PDAC with ferroptosis-based immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Oxirredução , Neoplasias Pancreáticas
17.
Front Genet ; 13: 993322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506331

RESUMO

The purpose of this study was to explore platinum resistance-related biomarkers and mechanisms in lung adenocarcinoma. Through the analysis of gene expression data of lung adenocarcinoma patients and normal patients from The Cancer Genome Atlas, Gene Expression Omnibus database, and A database of genes related to platinum resistance, platinum resistance genes in lung adenocarcinoma and platinum resistance-related differentially expressed genes were obtained. After screening by a statistical significance threshold, a total of 252 genes were defined as platinum resistance genes with significant differential expression, of which 161 were up-regulated and 91 were down-regulated. The enrichment results of up-regulated gene Gene Ontology (GO) showed that TOP3 entries related to biological processes (BP) were double-strand break repair, DNA recombination, DNA replication, the down-regulated gene GO enriches the TOP3 items about biological processes (BP) as a response to lipopolysaccharide, muscle cell proliferation, response to molecule of bacterial origin. Gene Set Enrichment Analysis showed that the top three were e2f targets, g2m checkpoint, and rgf beta signaling. A prognostic model based on non-negative matrix factorization classification showed the characteristics of high- and low-risk groups. The prognostic model established by least absolute shrinkage and selection operator regression and risk factor analysis showed that genes such as HOXB7, NT5E, and KRT18 were positively correlated with risk score. By analyzing the differences in m6A regulatory factors between high- and low-risk groups, it was found that FTO, GPM6A, METTL3, and YTHDC2 were higher in the low-risk group, while HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2, IGF2BP3, and RBM15B were higher in the high-risk group. Immune infiltration and drug sensitivity analysis also showed the gene characteristics of the platinum-resistant population in lung adenocarcinoma. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 were lower in the tumor expression group, and that the survival of the low expression group was worse than that of the high expression group. In conclusion, the results of this study show that platinum resistance-related differentially expressed genes in lung adenocarcinoma are mainly concentrated in biological processes such as DNA recombination and response to lipopolysaccharide. The validation set proved that the high-risk group of our prognostic model had poor survival. M6A regulatory factor analysis, immune infiltration, and drug sensitivity analysis all showed differences between high and low-risk groups. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 could be protective factors. Further exploration of the potential impact of these genes on the risk and prognosis of drug-resistant patients with lung adenocarcinoma would provide theoretical support for future research.

18.
Int J Biol Sci ; 18(13): 4869-4883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982899

RESUMO

Non-small cell lung cancer (NSCLC) is one of the deadliest cancers in the world. Metastasis is considered one of the leading causes of treatment failure and death in NSCLC patients. A crucial factor of promoting metastasis in epithelium-derived carcinoma has been considered as epithelial-mesenchymal transition (EMT). Rictor, one of the components of mTORC2, has been reportedly involved in EMT and metastasis of human malignancies. However, the regulatory mechanisms of Rictor, Rictor-mediated EMT and metastasis in cancers remain unknown. Our present study indicates that Rictor is highly expressed in human NSCLC cell lines and tissues and is regulated, at least partially, at the transcriptional level. Knockdown of Rictor expression causes phenotype alterations through EMT, which is accompanied by the impairment of migration and invasion ability in NSCLC cells. Additionally, we have cloned and identified the human Rictor core promoter for the first time and confirmed that transcription factor KLF4 directly binds to the Rictor promoter and transcriptionally upregulated Rictor expression. Knockdown of KLF4 results in Rictor's downregulation accompanied by a series of characteristic changes of mesenchymal-epithelial transition (MET) and significantly decreases migration, invasion as well as metastasis of NSCLC cells. Re-introducing Rictor in KLF4-knockdown NSCLC cells partially reverses the epithelial phenotype to the mesenchymal phenotype and attenuates the inhibition of cell migration and invasion caused by KLF4 knocking down. Knockdown of KLF4 prevents mTOR/Rictor interaction and metastasis of NSCLC in vivo. The understanding of the regulator upstream of Rictor may provide an opportunity for the development of new inhibitors and the rational design of combination regimens based on different metastasis-related molecular targets and finally prevents cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Companheira de mTOR Insensível à Rapamicina , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel/genética , Neoplasias Pulmonares/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Fatores de Transcrição/metabolismo
19.
Dermatol Ther (Heidelb) ; 12(5): 1167-1179, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430723

RESUMO

INTRODUCTION: Atopic dermatitis (AD) is one of the most common skin diseases, and it may be associated with skin cancer risk. However, there is a controversy pertaining to whether it implies a greater or decreased risk of skin cancers. We aimed to study the relationship between AD and skin cancer risk. METHODS: PubMed and Embase databases from their inception to 4 August 2021 were systematically searched. RESULTS: We evaluated 16 studies involving a total of 9,638,093 participants examining the contribution of AD to skin cancers. Random-effects model was applied to estimate the overall effect sizes. The pooled analysis of 16 studies indicated that AD was significantly associated with an overall increased risk of skin cancer. Subgroup pooled analyses showed that AD was statistically associated with an increased risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). With regard to cohort study, AD was statistically associated with an increased risk of nonmelanoma skin cancer (NMSC), BCC, and SCC, but not melanoma risk. Sensitivity analysis revealed that excluding each study in turn did not alter the overall combined results. No publication bias existed among the studies. CONCLUSION: It can be concluded that AD is associated with risk of skin cancers; however, this association still needs to be verified in well-designed, worldwide trials (especially prospective, non-Western studies). The mechanism of AD leading to skin cancer is not clear, and further research is needed to explore the possibility of a potential pathogenesis.

20.
Acta Pharmacol Sin ; 43(11): 2749-2758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35484402

RESUMO

Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Nanomedicina , Imunoterapia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA