Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gynecol Oncol ; 30(2): e26, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30740957

RESUMO

OBJECTIVE: Poly (ADP-ribose) polymerase (PARP) is an important molecule in the early stress response of DNA damage, which is involved in DNA damage repair and cellular senescence. Olaparib, as PARP inhibitor, has an anti-tumor effect on high grade serous ovarian cancer, but its effects on cellular senescence have not been reported. This study intends to explore the role of olaparib in the regulation of senescence in ovarian cancer cells. METHODS: The effects of olaparib on the senescence of ovarian cancer cells were detected by using the senescence-associated ß-galactosidase (SA-ß-Gal) and senescence-associated heterochromatin aggregation (SAHF). Quantitative real-time polymerase chain reaction was used to analyze the senescence-associated secretory phenotype (SASP). Cell cycle and apoptosis were detected by flow cytometry. The effect of olaparib on tumor growth was analyzed in a nude mouse xenograft transplantation model. RESULTS: Long-term (6 days) treatment with olaparib (5 µ) significantly inhibited the growth of ovarian cancer cells, leading to arrest the cell cycle at G0/G1 phase, significant increase the number of positive SA-ß-Gal stained cells and positive SAHF cells. The expression of P16 and retinoblastoma protein (p-RB) were significantly enhanced in SKOV3 cells under olaparib treated, meanwhile, the expression of P53 and p-RB were upregulated in A2780 cells. In OVCAR-3 cells, the expression of P53 was downregulated and p-RB was upregulated. Mice with SKOV3 xenograft transplantation was given olaparib (10 mg/kg/day) via abdominal cavity administration, the tumor volume was reduced (p<0.01). CONCLUSION: Continuous low dosage administration of olaparib induced senescence under P16 or P53 dependent manner in ovarian cancer.


Assuntos
Senescência Celular/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/efeitos dos fármacos , Regulação para Baixo , Feminino , Humanos , Camundongos Nus , Neoplasias Experimentais , Proteína do Retinoblastoma/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
2.
Reprod Biomed Online ; 34(4): 406-413, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28109704

RESUMO

Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia.


Assuntos
Nicotina/farmacologia , Trofoblastos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Trofoblastos/citologia , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Ovarian Res ; 6(1): 80, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24252539

RESUMO

BACKGROUND: RNA interference technology has shown high therapeutic potential for cancer treatment. However, serum instability, poor tissue permeability and non-specific uptake of short interfering RNA (siRNA) limit its administration in vivo. To overcome these limitations and improve the specificity for ovarian cancer, we developed a targeted nanoparticle delivery system for siRNA. This system included follicle-stimulating hormone (FSH) ß 33-53 peptide as a targeting moiety that specifically recognized FSH receptor (FSHR) expressed on ovarian cancer cells. Growth regulated oncogene α (gro-α) has been reported to be involved in ovarian cancer development and progression. Thus, siRNA targeted to gro-α was used as an antitumor drug in this delivery system. METHODS: FSH ß 33-53 peptide-conjugated gro-α siRNA-loaded polyethylene glycol (PEG)-polyethylenimine (PEI) nanoparticles (FSH33-G-NP) were prepared and characterized by gel retardation assay and transmission electron microscopy. Particle size and zeta potential were determined. Expression of gro-α mRNA and protein was detected by real-time quantitative RT-PCR, immunocytochemistry and enzyme-linked immunosorbent assay. The proliferation, migration and invasion of the ovarian clear cell carcinoma cell line ES-2 were evaluated by cell counting kit-8 assay, cell scratch assay and transwell migration assay. RESULTS: A siRNA sequence that is effective in silencing gro-α expression was obtained and loaded into the targeted delivery system. Compared with gro-α siRNA-loaded nanoparticles without FSH peptide modification (G-NP), FSH33-G-NP significantly down-regulated gro-α expression in ES-2 cells at mRNA and protein levels. Consequently, the aggressive biological behaviors of ES-2 cells, including proliferation, migration and invasion, were suppressed after silencing gro-α expression, and the addition of the FSH ß 33-53 peptide enhanced the suppressive effects. CONCLUSIONS: This study indicated that a FSHR-mediated delivery system could mediate the highly selective delivery of siRNA into ovarian cancer cells and that silencing gro-α expression could be a potential choice for ovarian cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA