Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(3): 345-353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903891

RESUMO

Since their initial development, cell membrane-coated nanoparticles (CNPs) have become increasingly popular in the biomedical field. Despite their inherent versatility and ability to enable complex biological applications, there is considerable interest in augmenting the performance of CNPs through the introduction of additional functionalities. Here we demonstrate a genetic-engineering-based modular approach to CNP functionalization that can encompass a wide range of ligands onto the nanoparticle surface. The cell membrane coating is engineered to express a SpyCatcher membrane anchor that can readily form a covalent bond with any moiety modified with SpyTag. To demonstrate the broad utility of this technique, three unique targeted CNP formulations are generated using different classes of targeting ligands, including a designed ankyrin repeat protein, an affibody and a single-chain variable fragment. In vitro, the modified nanoparticles exhibit enhanced affinity towards cell lines overexpressing the cognate receptors for each ligand. When formulated with a chemotherapeutic payload, the modularly functionalized nanoparticles display strong targeting ability and growth suppression in a murine tumour xenograft model of ovarian cancer. Our data suggest genetic engineering offers a feasible approach for accelerating the development of multifunctional CNPs for a broad range of biomedical applications.


Assuntos
Engenharia Genética , Nanopartículas , Humanos , Animais , Camundongos , Linhagem Celular , Membrana Celular , Nanopartículas/química
2.
Small ; 19(52): e2305551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635117

RESUMO

Nanoparticles coated with natural cell membranes have emerged as a promising class of biomimetic nanomedicine with significant clinical potential. Among them, macrophage membrane-coated nanoparticles hold particular appeal due to their versatility in drug delivery and biological neutralization applications. This study employs a genetic engineering approach to enhance their in vivo residence times, aiming to further improve their performance. Specifically, macrophages are engineered to express proline-alanine-serine (PAS) peptide chains, which provide additional protection against opsonization and phagocytosis. The resulting modified nanoparticles demonstrate prolonged residence times when administered intravenously or introduced intratracheally, surpassing those coated with the wild-type membrane. The longer residence times also contribute to enhanced nanoparticle efficacy in inhibiting inflammatory cytokines in mouse models of lipopolysaccharide-induced lung injury and sublethal endotoxemia, respectively. This study underscores the effectiveness of genetic modification in extending the in vivo residence times of macrophage membrane-coated nanoparticles. This approach can be readily extended to modify other cell membrane-coated nanoparticles toward more favorable biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Macrófagos/metabolismo , Membrana Celular/metabolismo , Citoplasma
3.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435892

RESUMO

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Assuntos
Malária Falciparum , Malária , Melanoma , Humanos , Antígenos de Protozoários/metabolismo , Biomimética , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum
4.
Adv Drug Deliv Rev ; 185: 114294, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436569

RESUMO

Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Bactérias , Humanos
5.
Bioconjug Chem ; 33(4): 586-593, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35285617

RESUMO

Active targeting strategies aimed at improving drug homing while reducing systemic toxicity are widely being pursued in the growing field of nanomedicine. While they can be effective, these approaches often require the identification of cell-specific targets and in-depth knowledge of receptor binding interactions. More recently, there has been significant interest in biomimetic nanoformulations capable of replicating the properties of naturally occurring systems. In particular, the advent of cell membrane coating nanotechnology has enabled researchers to leverage the inherent tropisms displayed by living cells, bypassing many of the challenges associated with traditional bottom-up nanoengineering. In this work, we report on a biomimetic organotropic nanodelivery system for localizing therapeutic payloads to the lungs. Metastatic breast cancer exosomes, which are lung tropic due to their unique surface marker expression profile, are used to coat nanoparticle cores loaded with the anti-inflammatory drug dexamethasone. In vivo, these nanoparticles demonstrate enhanced accumulation in lung tissue and significantly reduce proinflammatory cytokine burden in a lung inflammation model. Overall, this work highlights the potential of using biomimetic organ-level delivery strategies for the management of certain disease conditions.


Assuntos
Materiais Biomiméticos , Pneumopatias , Nanopartículas , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Biomimética , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanopartículas/química , Nanotecnologia
6.
Leukemia ; 36(4): 994-1005, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845316

RESUMO

Cancer vaccines are promising treatments to prevent relapse after chemotherapy in acute myeloid leukemia (AML) patients, particularly for those who cannot tolerate intensive consolidation therapies. Here, we report the development of an AML cell membrane-coated nanoparticle (AMCNP) vaccine platform, in which immune-stimulatory adjuvant-loaded nanoparticles are coated with leukemic cell membrane material. This AMCNP vaccination strategy stimulates leukemia-specific immune responses by co-delivering membrane-associated antigens along with adjuvants to antigen-presenting cells. To demonstrate that this AMCNP vaccine enhances leukemia-specific antigen presentation and T cell responses, we modified a murine AML cell line to express membrane-bound chicken ovalbumin as a model antigen. AMCNPs were efficiently acquired by antigen-presenting cells in vitro and in vivo and stimulated antigen cross-presentation. Vaccination with AMCNPs significantly enhanced antigen-specific T cell expansion and effector function compared with control vaccines. Prophylactic vaccination with AMCNPs enhanced cellular immunity and protected against AML challenge. Moreover, in an AML post-remission vaccination model, AMCNP vaccination significantly enhanced survival in comparison to vaccination with whole leukemia cell lysates. Collectively, AMCNPs retained AML-specific antigens, elicited enhanced antigen-specific immune responses, and provided therapeutic benefit against AML challenge.


Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Nanopartículas , Animais , Apresentação de Antígeno , Membrana Celular , Humanos , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Vacinação
7.
Mol Aspects Med ; 83: 101007, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34353637

RESUMO

Vaccination is a modality that has been widely explored for the treatment of various diseases. To increase the potency of vaccine formulations, immunostimulatory adjuvants have been regularly exploited, and the stimulator of interferon genes (STING) signaling pathway has recently emerged as a remarkable therapeutic target. STING is an endogenous protein on the endoplasmic reticulum that is a downstream sensor to cytosolic DNA. Upon activation, STING initiates a series of intracellular signaling cascades that ultimately generate potent type I interferon-mediated immune responses. Both natural and synthetic agonists have been used to stimulate the STING pathway, but they are usually administered locally due to low bioavailability, instability, and difficulty in bypassing the plasma membrane. With excellent pharmacokinetic profiles and versatility, nanocarriers can address many of these challenges and broaden the application of STING vaccines. Along these lines, STING-inducing nanovaccines are being developed to address a wide range of diseases. In this review, we discuss the recent advances in STING nanovaccines for anticancer, antiviral, and antibacterial applications.


Assuntos
Doenças Transmissíveis , Neoplasias , Humanos , Imunoterapia , Proteínas de Membrana , Neoplasias/tratamento farmacológico , Transdução de Sinais
8.
Cancer Cell Int ; 21(1): 636, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844614

RESUMO

BACKGROUND: Circular RNAs (circRNAs), which are endogenous non-coding RNAs, are associated with various biological processes including development, homeostatic maintenance, and pathological responses. Accumulating evidence has implicated non-coding RNAs in cancer progression, and the role of circRNAs in particular has drawn wide attention. However, circRNA expression patterns and functions in hepatocellular carcinoma (HCC) remain poorly understood. METHODS: CircRNA sequencing was performed to screen differentially expressed circRNAs in HCC. Northern blotting, quantitative real-time polymerase chain reaction, nucleocytoplasmic fractionation, and fluorescence in situ hybridization analyses were conducted to evaluate the expression and localization of circSLC7A11 in HCC tissues and cells. CircSLC7A11 expression levels were modified in cultured HCC cell lines to explore the association between the expression of circSLC7A11 and the malignant behavior of these cells using several cell-based assays. The modified cells were implanted into immunocompetent nude mice to assess tumor growth and metastasis in vivo. We applied bioinformatics methods, RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays to explore the mechanisms of circSLC7A11 in HCC. RESULTS: CircSLC7A11 (hsa_circ_0070975) was conserved and dramatically overexpressed in HCC tissues and cells. HCC patients showing high circSLC7A11 expression had worse prognoses. Our in vitro and in vivo experiments showed that circSLC7A11 markedly accelerated HCC progression and metastasis through the circSLC7A11/miR-330-3p/CDK1 axis. CONCLUSIONS: The acceleration of HCC progression and metastasis by circSLC7A11 through the circSLC7A11/miR-330-3p/CDK1 axis suggests that circSLC7A11 is a potential novel diagnostic and therapeutic target for HCC treatment.

9.
Adv Mater ; 33(49): e2103505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599770

RESUMO

The combination of immunotherapy with other forms of treatment is an emerging strategy for boosting antitumor responses. By combining multiple modes of action, these combinatorial therapies can improve clinical outcomes through unique synergisms. Here, a microrobot-based strategy that integrates tumor tissue disruption with biological stimulation is shown for cancer immunotherapy. The microrobot is fabricated by loading bacterial outer membrane vesicles onto a self-propelling micromotor, which can react with water to generate a propulsion force. When administered intratumorally to a solid tumor, the disruption of the local tumor tissue coupled with the delivery of an immunostimulatory payload leads to complete tumor regression. Additionally, treatment of the primary tumor results in the simultaneous education of the host immune system, enabling it to control the growth of distant tumors. Overall, this work introduces a distinct application of microrobots in cancer immunotherapy and offers an attractive strategy for amplifying cancer treatment efficacy when combined with conventional therapies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunidade , Imunoterapia/métodos , Neoplasias/tratamento farmacológico
10.
Nat Commun ; 12(1): 4136, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230486

RESUMO

Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in 'lure and kill' mechanism (denoted 'MΦ-NP(L&K)') for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.


Assuntos
Doença Aguda/terapia , Macrófagos , Nanopartículas/uso terapêutico , Pancreatite/terapia , Animais , Citocinas , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Meliteno , Camundongos , Fosfolipases A2/sangue , Células THP-1
11.
Nat Commun ; 12(1): 1999, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790276

RESUMO

Intratumoral immunotherapy is an emerging modality for the treatment of solid tumors. Toll-like receptor (TLR) agonists have shown promise for eliciting immune responses, but systemic administration often results in the development of adverse side effects. Herein, we investigate whether localized delivery of the TLR agonist, resiquimod (R848), via platelet membrane-coated nanoparticles (PNP-R848) elicits antitumor responses. The membrane coating provides a means of enhancing interactions with the tumor microenvironment, thereby maximizing the activity of R848. Intratumoral administration of PNP-R848 strongly enhances local immune activation and leads to complete tumor regression in a colorectal tumor model, while providing protection against repeated tumor re-challenges. Moreover, treatment of an aggressive breast cancer model with intratumoral PNP-R848 delays tumor growth and inhibits lung metastasis. Our findings highlight the promise of locally delivering immunostimulatory payloads using biomimetic nanocarriers, which possess advantages such as enhanced biocompatibility and natural targeting affinities.


Assuntos
Imidazóis/uso terapêutico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Animais , Plaquetas/química , Plaquetas/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Células HT29 , Humanos , Imidazóis/química , Imidazóis/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias/imunologia , Neoplasias/patologia , Resultado do Tratamento , Microambiente Tumoral/imunologia
12.
J Cancer ; 12(5): 1284-1294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531974

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and represents a classic paradigm of inflammation-related cancer. Various inflammation-related risk factors jointly contribute to the development of chronic inflammation in the liver. Chronic inflammation, in turn, leads to continuous cycles of destruction-regeneration in the liver, contributing to HCC development and progression. Tumor associated macrophages are abundant in the tumor microenvironment of HCC, promoting chronic inflammation and HCC progression. Hence, better understanding of the mechanism by which tumor associated macrophages contribute to the pathogenesis of HCC would allow for the development of novel macrophage-targeting immunotherapies. This review summarizes the current knowledge regarding the mechanisms by which macrophages promote HCC development and progression, as well as information from ongoing therapies and clinical trials assessing the efficacy of macrophage-modulating therapies in HCC patients.

13.
Nano Lett ; 20(7): 5570-5574, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551679

RESUMO

We report cellular nanosponges as an effective medical countermeasure to the SARS-CoV-2 virus. Two types of cellular nanosponges are made of the plasma membranes derived from human lung epithelial type II cells or human macrophages. These nanosponges display the same protein receptors, both identified and unidentified, required by SARS-CoV-2 for cellular entry. It is shown that, following incubation with the nanosponges, SARS-CoV-2 is neutralized and unable to infect cells. Crucially, the nanosponge platform is agnostic to viral mutations and potentially viral species, as well. As long as the target of the virus remains the identified host cell, the nanosponges will be able to neutralize the virus.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Nanoestruturas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Membrana Celular/virologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Pulmão/citologia , Pulmão/virologia , Macrófagos/virologia , Nanoestruturas/ultraestrutura , Nanotecnologia , Pneumonia Viral/virologia , Receptores Virais/fisiologia , SARS-CoV-2 , Internalização do Vírus
14.
Adv Mater ; 32(30): e2001808, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32538494

RESUMO

The recent success of immunotherapies has highlighted the power of leveraging the immune system in the fight against cancer. In order for most immune-based therapies to succeed, T cell subsets with the correct tumor-targeting specificities must be mobilized. When such specificities are lacking, providing the immune system with tumor antigen material for processing and presentation is a common strategy for stimulating antigen-specific T cell populations. While straightforward in principle, experience has shown that manipulation of the antigen presentation process can be incredibly complex, necessitating sophisticated strategies that are difficult to translate. Herein, the design of a biomimetic nanoparticle platform is reported that can be used to directly stimulate T cells without the need for professional antigen-presenting cells. The nanoparticles are fabricated using a cell membrane coating derived from cancer cells engineered to express a co-stimulatory marker. Combined with the peptide epitopes naturally presented on the membrane surface, the final formulation contains the necessary signals to promote tumor antigen-specific immune responses, priming T cells that can be used to control tumor growth. The reported approach represents an emerging strategy that can be used to develop multiantigenic, personalized cancer immunotherapies.


Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Membrana Celular/metabolismo , Engenharia , Nanomedicina/métodos , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Imunoterapia
15.
Sci Adv ; 6(13): eaaz6108, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32258408

RESUMO

Small interfering RNA (siRNA) is a powerful tool for gene silencing that has been used for a wide range of biomedical applications, but there are many challenges facing its therapeutic use in vivo. Here, we report on a platelet cell membrane-coated metal-organic framework (MOF) nanodelivery platform for the targeted delivery of siRNA in vivo. The MOF core is capable of high loading yields, and its pH sensitivity enables endosomal disruption upon cellular uptake. The cell membrane coating provides a natural means of biointerfacing with disease substrates. It is shown that high silencing efficiency can be achieved in vitro against multiple target genes. Using a murine xenograft model, significant antitumor targeting and therapeutic efficacy are observed. Overall, the biomimetic nanodelivery system presented here provides an effective means of achieving gene silencing in vivo and could be used to expand the applicability of siRNA across a range of disease-relevant applications.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Vesículas Revestidas/metabolismo , Inativação Gênica , Nanopartículas Metálicas , Estruturas Metalorgânicas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Camundongos , RNA Interferente Pequeno , Survivina/genética , Survivina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Oncol ; 10: 581210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585197

RESUMO

With the increasing daily workload of physicians, computer-aided diagnosis (CAD) systems based on deep learning play an increasingly important role in pattern recognition of diagnostic medical images. In this paper, we propose a framework based on hierarchical convolutional neural networks (CNNs) for automatic detection and classification of focal liver lesions (FLLs) in multi-phasic computed tomography (CT). A total of 616 nodules, composed of three types of malignant lesions (hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and metastasis) and benign lesions (hemangioma, focal nodular hyperplasia, and cyst), were randomly divided into training and test sets at an approximate ratio of 3:1. To evaluate the performance of our model, other commonly adopted CNN models and two physicians were included for comparison. Our model achieved the best results to detect FLLs, with an average test precision of 82.8%, recall of 93.4%, and F1-score of 87.8%. Our model initially classified FLLs into malignant and benign and then classified them into more detailed classes. For the binary and six-class classification, our model achieved average accuracy results of 82.5 and73.4%, respectively, which were better than the other three classification neural networks. Interestingly, the classification performance of the model was placed between a junior physician and a senior physician. Overall, this preliminary study demonstrates that our proposed multi-modality and multi-scale CNN structure can locate and classify FLLs accurately in a limited dataset, and would help inexperienced physicians to reach a diagnosis in clinical practice.

17.
Adv Mater ; 32(13): e1901255, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31206841

RESUMO

While traditional approaches for disease management in the era of modern medicine have saved countless lives and enhanced patient well-being, it is clear that there is significant room to improve upon the current status quo. For infectious diseases, the steady rise of antibiotic resistance has resulted in super pathogens that do not respond to most approved drugs. In the field of cancer treatment, the idea of a cure-all silver bullet has long been abandoned. As a result of the challenges facing current treatment and prevention paradigms in the clinic, there is an increasing push for personalized therapeutics, where plans for medical care are established on a patient-by-patient basis. Along these lines, vaccines, both against bacteria and tumors, are a clinical modality that could benefit significantly from personalization. Effective vaccination strategies could help to address many challenging disease conditions, but current vaccines are limited by factors such as a lack of potency and antigenic breadth. Recently, researchers have turned toward the use of biomimetic nanotechnology as a means of addressing these hurdles. Recent progress in the development of biomimetic nanovaccines for antibacterial and anticancer applications is discussed, with an emphasis on their potential for personalized medicine.


Assuntos
Nanomedicina/métodos , Medicina de Precisão/métodos , Vacinação/métodos , Animais , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/uso terapêutico , Materiais Biomiméticos/química , Biomimética/métodos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Nanotecnologia/métodos , Neoplasias/prevenção & controle
18.
Cancer Med ; 9(3): 1115-1130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31823522

RESUMO

Gemcitabine (GEM) alone and GEM-based chemotherapy are the preferred regimens for treating advanced unresectable and metastatic pancreatic cancer (PC). However, these treatments have limited efficacy due to acquired resistance of cancer cells to chemotherapy, the mechanisms of which are not fully understood. In this study, we established two stable multidrug-resistant cell lines, BxPC-3-GR and CFPAC-1-GR, from their corresponding parental cells through exposure to GEM following a stepwise incremental dosing strategy. The GEM IC50 values of BxPC-3-GR and CFPAC-1-GR increased 112-fold and 210-fold, respectively, compared to parental cell lines. In vitro and in vivo experiments confirmed that both GEM-resistant cell subgroups declined in proliferative capacity, but were more resistant to GEM. Unlike CFPAC-1-GR, BxPC-3-GR exhibited enhanced migratory and invasive properties compared with BxPC-3 in vitro. We also compared differentially expressed mRNA profiles between parental and GEM-resistant cells using transcriptome sequencing. RRM1, STIM1, and TRIM21 were significantly upregulated in both GEM-resistant cell lines and confirmed to be associated with the degree of GEM resistance by quantitative reverse-transcription polymerase chain reaction and western blot analysis. These three genes were more highly expressed in PC tissues and potentially regarded as prognostic biomarkers through database mining. Thus, our findings provide chemo-resistant cell models to better understand the underlying mechanisms of chemoresistance, and to explore potential biomarkers for GEM response in PC patients.


Assuntos
Biomarcadores Tumorais/genética , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA-Seq , Ribonucleoproteínas/genética , Ribonucleosídeo Difosfato Redutase/genética , Molécula 1 de Interação Estromal/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
19.
Adv Biosyst ; 3(1): e1800219, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31728404

RESUMO

It is currently understood that, in order for a tumor to successfully grow, it must evolve means of evading immune surveillance. In the past several decades, researchers have leveraged increases in our knowledge of tumor immunology to develop therapies capable of augmenting endogenous immunity and eliciting strong antitumor responses. In particular, the goal of anticancer vaccination is to train the immune system to properly utilize its own resources in the fight against cancer. Although attractive in principle, there are currently only limited examples of anticancer vaccines that have been successfully translated to the clinic. Recently, there has been a significant push towards the use of nanotechnology for designing vaccine candidates that exhibit enhanced potency and specificity. In this progress report, we discuss recent developments in the field of anticancer nanovaccines. By taking advantage of the flexibility offered by nanomedicine to purposefully program immune responses, this new generation of vaccines has the potential to address many of the hurdles facing traditional platforms. A specific emphasis is placed on the emergence of cell membrane-coated nanoparticles, a novel biomimetic platform that can be used to generate personalized nanovaccines that elicit strong, multi-antigenic antitumor responses.

20.
Exp Ther Med ; 18(4): 2608-2616, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31572509

RESUMO

Pancreatic cancer is a common malignancy that has a poor prognosis and limited therapeutic options. Enhancer of zeste homolog 2 (EZH2) serves a key role in the progression of different types of cancers. The effect of GSK343 (a competitive inhibitor of EZH2) on pancreatic cancer cells was assessed in the present study. Cell viability was evaluated using MTT and cell counting kit-8 assays in AsPC-1 and PANC-1 cells. Flow cytometry and an EdU assay were also performed to assess the effects of GSK343 on cell proliferation, apoptosis and the cell cycle. The induction of autophagy and associated molecular mechanisms were studied using fluorescence microscopy and western blot analysis. The results demonstrated that GSK343 inhibited cell viability in a dose- and time-dependent manner. Furthermore, GSK343 suppressed cell proliferation, promoted apoptosis and blocked cell cycle progression at the G1-phase. Furthermore, GSK343 induced autophagy in pancreatic cancer via the AKT/mTOR signaling pathway. In conclusion, GSK343 exhibited an anti-cancer effect on pancreatic cancer cells, downregulating the AKT/mTOR signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA