Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biosens Bioelectron ; 253: 116143, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452567

RESUMO

A modern agriculture uses alternative pest control methods to boost productivity, leading to an accumulation of organophosphorus (OPPs) congeners. This necessitates an intuitive and quick way to identify OPPs congeners. A colorimetric sensor for detecting OPPs congeners using a double-enzyme cascade reaction has been successfully designed and constructed in this study. The OPPs regulate the color changes induced by manganese dioxide nanoflowers (MnO2 NFs) and specific alkaline phosphatases (ALP) during the etching of gold nanopyramids (Au NBPs). The ascorbic acid (AA) produced by ALP hydrolysis inhibits Au NBPs etching by MnO2 NFs oxidized 3, 3', 5, 5'-tetramethylbenzidine (TMB). By inhibiting ALP catalytic activity, OPPs prevent AA formation. In this process, Au NBPs will undergo further etching, resulting in various colors so they can be analyzed semi-quantitatively with the naked eye. It has been found that different types of OPPs inhibit enzymes differently and therefore result in varying degrees of etching of Au NBPs. Principal Component Analysis (PCA) is performed by smart devices that convert R, G, and B signals into digital signals. This colorimetric array tests various foods (tea, apple, and cabbage). Colorimetric visualization sensors combined with data analysis will be used in real-life product development.


Assuntos
Técnicas Biossensoriais , Praguicidas , Praguicidas/toxicidade , Praguicidas/análise , Óxidos , Compostos Organofosforados , Compostos de Manganês , Colorimetria/métodos , Ácido Ascórbico , Fosfatase Alcalina
2.
Cell Res ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491170

RESUMO

Atherosclerosis (AS), a leading cause of cardio-cerebrovascular disease worldwide, is driven by the accumulation of lipid contents and chronic inflammation. Traditional strategies primarily focus on lipid reduction to control AS progression, leaving residual inflammatory risks for major adverse cardiovascular events (MACEs). While anti-inflammatory therapies targeting innate immunity have reduced MACEs, many patients continue to face significant risks. Another key component in AS progression is adaptive immunity, but its potential role in preventing AS remains unclear. To investigate this, we conducted a retrospective cohort study on tumor patients with AS plaques. We found that anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) significantly reduces AS plaque size. With multi-omics single-cell analyses, we comprehensively characterized AS plaque-specific PD-1+ T cells, which are activated and pro-inflammatory. We demonstrated that anti-PD-1 mAb, when captured by myeloid-expressed Fc gamma receptors (FcγRs), interacts with PD-1 expressed on T cells. This interaction turns the anti-PD-1 mAb into a substitute PD-1 ligand, suppressing T-cell functions in the PD-1 ligands-deficient context of AS plaques. Further, we conducted a prospective cohort study on tumor patients treated with anti-PD-1 mAb with or without Fc-binding capability. Our analysis shows that anti-PD-1 mAb with Fc-binding capability effectively reduces AS plaque size, while anti-PD-1 mAb without Fc-binding capability does not. Our work suggests that T cell-targeting immunotherapy can be an effective strategy to resolve AS in humans.

3.
J Gynecol Oncol ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38282259

RESUMO

OBJECTIVE: This study aims to assess the impact of the metabolic risk score (MRS) on both the time to achieve complete remission (CR) of fertility-sparing treatments for atypical endometrial hyperplasia (AEH) and early EC patients. METHODS: Univariate and multivariate logistic analyses were employed to identify independent risk factors affecting the time to CR with patients at our center. These factors were subsequently incorporated into receiver operator characteristic curve analysis and decision curve analysis to assess the predictive accuracy of time to CR. Additionally, Kaplan-Meier analysis was utilized to determine the cumulative CR rate for patients. RESULTS: The 173 patients who achieved CR following fertility preservation treatment (FPT) were categorized into three subgroups based on their time to CR (<6, 6-9, >9 months). Body mass index (hazard ratio [HR]=0.20; 95% confidence interval [CI]=0.03, 0.38; p=0.026), MRS (HR=0.31; 95% CI=0.09, 0.52; p=0.005), insulin resistance (HR=1.83; 95% CI=0.05, 3.60; p=0.045), menstruation regularity (HR=3.77; 95% CI=1.91, 5.64; p=0.001), polycystic ovary syndrome (HR=-2.16; 95% CI=-4.03, -0.28; p=0.025), and histological type (HR=0.36; 95% CI=0.10, 0.62; p=0.005) were identified as risk factors for time to CR, with MRS being the independent risk factor (HR=0.29; 95% CI=0.02, 0.56; p=0.021). The inclusion of MRS significantly enhanced the predictive accuracy of time to CR (area under the curve [AUC]=0.789 for Model 1, AUC=0.862 for Model 2, p=0.032). Kaplan-Meier survival curves revealed significant differences in the cumulative CR rate among different risk groups. CONCLUSION: MRS emerges as a novel evaluation system that substantially enhances the predictive accuracy for the time to achieve CR in AEH and early EC patients seeking fertility preservation.

4.
ACS Nano ; 17(24): 25697-25706, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38063501

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) constitute a class of universally prevalent carcinogenic environmental contaminants. It is increasingly recognized, however, that PAHs derivatized with oxygen, sulfur, or nitrogen functional groups are frequently more dangerous than their unfunctionalized counterparts. This much larger family of chemicals─polycyclic aromatic compounds─PACs─is far less well characterized than PAHs. Using surface-enhanced Raman and IR Absorption spectroscopies (SERS + SEIRA) combined on a single substrate, along with density functional theoretical (DFT) calculations, we show that direct chemical detection and identification of PACs at sub-parts-per-billion concentration can be achieved. Focusing our studies on 9,10-anthraquinone, 5,12-tetracenequinone, 9-nitroanthracene, and 1-nitropyrene as model PAC contaminants, detection is made possible by incorporating a hydroxy-functionalized self-assembled monolayer that facilitates hydrogen bonding between analytes and the SERS + SEIRA substrate. 5,12-Tetracenequinone was detected at 0.3 ppb, and the limit of detection was determined to be 0.1 ppb using SEIRA alone. This approach is straightforwardly extendable to other families of analytes and will ultimately facilitate fieldable chemical detection of these dangerous yet largely overlooked environmental contaminants.

5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38113075

RESUMO

Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the development of effective drugs. To address these challenges, it is essential to analyze the polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This study presents KinomeMETA, a framework for profiling the activity of small molecule kinase inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms benchmark multi-task models and other kinase profiling models. It provides higher accuracy for understudied kinases with limited known data and broader coverage of kinase types, including important mutant kinases. Case studies on the discovery of new scaffold inhibitors for membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase and selective inhibitors for fibroblast growth factor receptors demonstrate the role of KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA has the potential to accelerate kinase drug discovery by more effectively exploring the kinase polypharmacology landscape.


Assuntos
Antineoplásicos , Polifarmacologia , Proteínas Serina-Treonina Quinases , Descoberta de Drogas
6.
ACS Med Chem Lett ; 14(8): 1079-1087, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583816

RESUMO

The use of small agonists to target stimulators of interferon genes (STING) has been demonstrated to be a promising strategy for the treatment of various cancers and infectious diseases. Herein, we discovered a series of 1H-pyrrole-3-carbonitrile derivatives as potential STING agonists. On this basis, the structure-activity relationship of this scaffold was studied by introducing various substituents on the aniline ring system. Representative compounds 7F, 7P, and 7R all displayed comparable activities to the reported STING agonist SR-717 in binding various hSTING alleles and induced reporter signal in human THP1 cell lines. Model compound 7F induced phosphorylation of TBK1, IRF3, p65, and STAT3 in a STING-dependent fashion and stimulated the expression of target genes IFNB1, CXCL10, and IL6 in a time-dependent manner in human THP1 cells. Our findings afforded a series of novel STING agonists with promising potential.

7.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639589

RESUMO

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
8.
Transl Oncol ; 37: 101764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643553

RESUMO

INTRODUCTION: N6-methyladenosine (m6A) is an emerging epigenetic modification, which plays a crucial role in the development of cancer. Nevertheless, the underlying mechanism of m6A-associated proteins and m6A modification in gallbladder cancer remains largely unknown. MATERIALS AND METHODS: The Gene Expression Omnibus database and tissue microarray were used to identify the key m6A-related gene in gallbladder cancer. The function and mechanism of IGF2BP3 were further investigated by knockdown and overexpression techniques in vitro and in vivo. RESULTS: We found that IGF2BP3 was elevated and correlated with poor prognosis in gallbladder cancer, which can be used as an independent prognostic factor for gallbladder cancer. IGF2BP3 accelerated the proliferation, invasion and migration of gallbladder cancer cells in vitro and in vivo. Mechanistically, IGF2BP3 interacted with and augmented the stability of CLDN4 mRNA by m6A modification. Enhancement of CLDN4 reversed the inhibitory effect of IGF2BP3 deficiency on gallbladder cancer. Furthermore, we demonstrated that IGF2BP3 promotes the activation of NF-κB signaling pathway by up-regulation of CLDN4. Overexpression of IGF2BP3 in gallbladder cancer cells obviously promoted the polarization of immunosuppressive phenotype in macrophages. Besides, Gallbladder cancer cells-derived IGF2BP3 up-regulated the levels of STAT3 in M2 macrophages, and promoted M2 polarization. CONCLUSIONS: We manifested IGF2BP3 promotes the aggressive phenotype of gallbladder cancer by stabilizing CLDN4 mRNA in an m6A-dependent manner and induces macrophage immunosuppressive polarization, which might offer a new theoretical basis for against gallbladder cancer.

9.
Br J Cancer ; 129(4): 601-611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402867

RESUMO

BACKGROUND: The effectiveness of conservative treatment of endometrial carcinoma (EC) with oral progesterone therapy, such as medroxyprogesterone acetate (MPA), can be blunted due to primary or acquired resistance, but the underlying mechanisms remain incompletely defined. METHODS: Genome-wide CRISPR screening was performed to identify potential regulators in response to MPA in Ishikawa cells. Crystal violet staining, RT-qPCR, western blotting, ChIP-qPCR and luciferase assays were employed to elucidate the p53-AarF domain-containing kinase 3 (ADCK3) regulatory axis and its roles in sensitizing EC cells to MPA treatment. RESULTS: ADCK3 is identified as a previously unrecognized regulator in response to MPA in EC cells. Loss of ADCK3 in EC cells markedly alleviated MPA-induced cell death. Mechanistically, loss of ADCK3 primarily suppresses MPA-mediated ferroptosis by abrogating arachidonate 15-lipoxygenase (ALOX15) transcriptional activation. Moreover, we validated ADCK3 as a direct downstream target of the tumor suppressor p53 in EC cells. By stimulating the p53-ADCK3 axis, the small-molecule compound Nutlin3A synergized with MPA to efficiently inhibit EC cell growth. CONCLUSIONS: Our findings reveal ADCK3 as a key regulator of EC cells in response to MPA and shed light on a potential strategy for conservative EC treatment by activating the p53-ADCK3 axis to sensitize MPA-mediated cell death.


Assuntos
Neoplasias do Endométrio , Acetato de Medroxiprogesterona , Feminino , Humanos , Acetato de Medroxiprogesterona/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Linhagem Celular Tumoral
10.
Chin Med J (Engl) ; 136(21): 2576-2586, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144734

RESUMO

BACKGROUND: Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC. METHODS: Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection. RESULTS: Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate. CONCLUSIONS: This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.


Assuntos
Neoplasias do Endométrio , Receptores de Progesterona , Feminino , Humanos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteômica , Linhagem Celular Tumoral , Neoplasias do Endométrio/metabolismo , Proliferação de Células/genética , Luciferases/genética , Luciferases/metabolismo , Luciferases/farmacologia , Regulação Neoplásica da Expressão Gênica/genética
11.
Int J Nanomedicine ; 18: 1381-1397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36987427

RESUMO

Background: Triple negative breast cancer (TNBC) is one of the most aggressive tumors with high metastasis and mortality, which constitutes 15~20% of all breast cancers. Chemotherapy remains main therapeutic option in the treatment of patients with TNBC. Methods: We developed reactive oxygen species (ROS)-responsive galactosylated nanoparticles (DOX@NPs) as an efficiently targeted carrier for doxorubicin (DOX) delivery to inhibit the growth of TNBC in vitro and in vivo. DOX@NPs were composed of polyacrylate galactose and phenylboronic derivatives conjugation. The in vitro cytotoxicity, cellular uptake, cell apoptosis and cycle distribution of tumor cells treated with different formulations were investigated. Meanwhile in vivo biodistribution and antitumor effects were investigated in a 4T1 tumor-bearing mouse model. Results: DOX@NPs showed good ROS responsiveness and rapid DOX release in the presence of H2O2. Furthermore, our data suggested that DOX@NPs could effectively trigger tumor cells apoptosis and cycle arrest, efficiently accumulate into tumor sites, and suppress tumor growth without adverse side effects. Conclusion: Our results suggested DOX@NP with potent potential as a promising nanocarrier for TNBC therapy, which deserved further investigation for other cancer treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Doxorrubicina
12.
BMC Gastroenterol ; 23(1): 18, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658474

RESUMO

BACKGROUND: Increasing research indicates that circular RNAs (circRNAs) play critical roles in the development of ulcerative colitis (UC). This study aimed to determine the role of circRNA CCND1 in UC bio-progression, which has been shown to be downregulated in UC tissues. METHODS: Reverse transcription quantitative polymerase chain reaction was used to determine the levels of circRNA CCND1, miR-142-5p, and nuclear receptor coactivator-3 (NCOA3) in UC tissues and in lipopolysaccharide (LPS)-induced Caco-2 cells. Target sites of circRNA CCND1 and miR-142-5p were predicted using StarBase, and TargetScan to forecast potential linkage points of NCOA3 and miR-142-5p, which were confirmed by a double luciferase reporter-gene assay. Cell Counting Kit 8 and flow cytometry assays were performed to assess Caco-2 cell viability and apoptosis. TNF-α, IL-1ß, IL-6, and IL-8 were detected using Enzyme-Linked Immunosorbent Assay kits. RESULTS: CircRNA CCND1 was downregulated in UC clinical samples and LPS-induced Caco-2 cells. In addition, circRNA CCND1 overexpression suppressed LPS-induced apoptosis and inflammatory responses in Caco-2 cells. Dual-luciferase reporter-gene assays showed that miR-142-5p could be linked to circRNA CCND1. Moreover, miR-142-5p was found to be highly expressed in UC, and its silencing inhibited LPS-stimulated Caco-2 cell apoptosis and inflammatory responses. Importantly, NCOA3 was found downstream of miR-142-5p. Overexpression of miR-142-5p reversed the inhibitory effect of circRNA CCND1-plasmid on LPS-stimulated Caco-2 cells, and the effects of miR-142-5p inhibitor were reversed by si-NCOA3. CONCLUSION: CircRNA CCND1 is involved in UC development by dampening miR-142-5p function, and may represent a novel approach for treating UC patients.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , RNA Circular/genética , MicroRNAs/genética , Colite Ulcerativa/genética , Células CACO-2 , Lipopolissacarídeos , Coativador 3 de Receptor Nuclear , Apoptose/genética , Ciclina D1/genética
13.
Proc Natl Acad Sci U S A ; 120(1): e2213222120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577059

RESUMO

Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects. Here, we describe a nanotechnology approach to improve the efficacy of ACT therapies by metabolically labeling T cells with unnatural sugar nanoparticles, allowing direct conjugation of antitumor cytokines onto the T cell surface during the manufacturing process. This allows local, concentrated activity of otherwise toxic cytokines. This approach increases T cell infiltration into solid tumors, activates the host immune system toward a Type 1 response, encourages antigen spreading, and improves control of aggressive solid tumors and achieves complete blood cancer regression with otherwise noncurative doses of CAR-T cells. Overall, this method provides an effective and easily integrated approach to the current ACT manufacturing process to increase efficacy in various settings.


Assuntos
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Neoplasias/patologia , Terapia Baseada em Transplante de Células e Tecidos
14.
Acta Pharmacol Sin ; 44(2): 475-485, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35918411

RESUMO

The B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1-3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target. Herein, we describe the discovery and identification of DC-B01, a novel BCL-2 inhibitor targeting the BH4 domain, through virtual screening combined with biophysical and biochemical methods. Our results from surface plasmon resonance and cellular thermal shift assay confirmed that the BH4 domain is responsible for the interaction between BCL-2 and DC-B01. As evidenced by further cell-based experiments, DC-B01 induced cell killing in a BCL-2-dependent manner and triggered apoptosis via the mitochondria-mediated pathway. DC-B01 disrupted the BCL-2/c-Myc interaction and consequently suppressed the transcriptional activity of c-Myc. Moreover, DC-B01 inhibited tumor growth in vivo in a BCL­2­dependent manner. Collectively, these results indicate that DC-B01 is a promising BCL-2 BH4 domain inhibitor with the potential for further development.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Domínios Proteicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Apoptose
15.
Curr Neuropharmacol ; 21(2): 392-408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35450528

RESUMO

Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Caspases/uso terapêutico
16.
Cell Mol Biol Lett ; 27(1): 110, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526973

RESUMO

BACKGROUND: Metabolic disorder is considered a well-established risk factor for endometrial carcinoma (EC). However, the mechanism remains unclear. Insulin resistance and excessive flux of free fatty acids serve as fundamental pathogenic factors in metabolic disorders, including obesity and type 2 diabetes. The aim of this study was to test the correlation between insulin resistance and dyslipidaemia in EC and to determine the effect of insulin and saturated fatty acids on EC cells. METHODS: A retrospective study on the medical records of patients with EC and RNA-seq from the TCGA database analysed with edgR and Gene Ontology (GO) were used to assess the correlation of dyslipidaemia and diabetes as well as obesity. Crystal violet assays and CCK-8 assays were used to detect the proliferation of EC cells, and Annexin V-PI was used to examine apoptosis. Transient changes in mitochondrial Ca2+ and reactive oxygen species (ROS) were monitored via confocal microscopy. DNA damage was assessed by comet assays. Changes in signalling pathways were detected via phospho-kinase array. western blotting was used to assess the molecular changes in endoplasmic reticulum (ER) stress and DNA damage. RESULTS: We found that glucose metabolism disorders accompanied dyslipidaemia in patients with EC. As a key regulator of glucose metabolism disorders, insulin promoted DNA damage, ROS and Ca2+ homoeostasis imbalance in a panel of established EC cell lines. Interestingly, excessive insulin boosted saturated fatty acid-induced pro-apoptotic effects in EC cells. Furthermore, our data showed that insulin synergised with saturated fatty acids to activate the mechanistic target of rapamycin kinase/70 kDa ribosomal protein S6 kinase (mTOR/p70S6K) pathway and ER stress, resulting in Ca2+ release from ER and unfolded protein response (UPR) activation, which contributed to combined insulin and saturated fatty acid treatment-induced apoptosis and tumour progression. CONCLUSIONS: Our data are the first to illustrate that impaired glucose metabolism accelerates dyslipidaemia-promoted EC progression, which is attributed to hyperinsulinaemia and saturated fatty acid-induced Ca2+ dyshomoeostasis and UPR activation in EC cells via ER stress.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias do Endométrio , Resistência à Insulina , Insulinas , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Estresse do Retículo Endoplasmático , Apoptose , Ácidos Graxos/farmacologia , Obesidade , Insulinas/farmacologia
17.
Cancer Cell Int ; 22(1): 385, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476503

RESUMO

OBJECTIVE: N6-methyladenosine (m6A) RNA methylation is involved in governing the mechanism of tumor progression. We aimed to excavate the biological role and mechanism of the m6A methyltransferase METTL3 in cholangiocarcinoma (CCA). METHODS: METTL3 expression was determined by database and tissue microarray analyses. The role of METTL3 in CCA was explored by loss- and gain-of-function experiments. The m6A target of METTL3 was detected by RNA sequencing. The role of AKR1B10 in CCA was explored, and the association between METTL3 and AKR1B10 was confirmed by rescue experiments. RESULT: METTL3 expression was upregulated in CCA tissue, and higher METTL3 expression was implicated in poor prognoses in CCA patients. Overexpression of METTL3 facilitated proliferation, migration, invasion, glucose uptake, and lactate production in CCA cells, whereas knockdown of METTL3 had the opposite effects. We further found that METTL3 deficiency inhibited CCA tumor growth in vivo. RNA sequencing and MeRIP-qPCR confirmed that METTL3 enhanced AKR1B10 expression and m6A modification levels. Furthermore, METTL3 directly binds with AKR1B10 at an m6A modification site. A CCA tissue microarray showed that AKR1B10 expression was upregulated in CCA tissue and that silencing AKR1B10 suppressed the malignant phenotype mentioned above in CCA. Notably, knockdown of AKR1B10 rescued the tumor-promoting effects induced by METTL3 overexpression. CONCLUSION: Elevated METTL3 expression promotes tumor growth and glycolysis in CCA through m6A modification of AKR1B10, indicating that METTL3 is a potential target for blocking glycolysis for application in CCA therapy.

19.
Cells ; 11(19)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36231119

RESUMO

Endometrial cancer (EC) is the most common gynecologic cancer with increasing incidence. The dysregulation of intracellular calcium plays a crucial role in cancer progression. However, the relationship between calcium-related genes and prognosis remains unclear. In this study, we aimed to establish a risk model based on calcium-related genes for prognosis prediction in patients with EC. The TCGA-total set was divided into a training set and a testing set (1:1). The four-gene prognostic signature (CACNA2D1, SLC8A1, TRPM4 and CCL2) was established and classified all EC patients into a low-risk or high-risk group. This model was validated in both the testing dataset and the total set. The EC patients with high RiskScores showed significantly shorter overall survival than those with low RiskScores, and this trend was consistent among most subgroups. Moreover, an enrichment analysis confirmed that calcium-related and estrogen-response signalings were significantly enriched in the high-risk group. The knockdown of CACNA2D1 by siRNA or its blocker, amlodipine (AM) inhibited cell proliferation and induced cycle arrest in vitro. The calcium channel blocker AM inhibited cell proliferation and induced cycle arrest in vitro. AM also showed marked tumor inhibition effects in vivo. In summary, the prognostic model constructed by four calcium-related genes can reliably predict the outcomes of EC patients, and a calcium channel blocker, AM, has significant potential for EC treatment.


Assuntos
Cálcio , Neoplasias do Endométrio , Anlodipino , Biomarcadores Tumorais/genética , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Interferente Pequeno
20.
Front Oncol ; 12: 906281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059657

RESUMO

Colorectal cancer (CRC), one of the cancers with highest mortality, involves complicated molecular mechanisms leading to the onset of malignant phenotypes. ZNF280A, a member of the zinc-finger protein family, was shown to be a promotor of oncogenesis in CRC in this study. ZNF280A was remarkably upregulated in CRC tissues, which was meaningfully associated with tumor progression and poor prognosis in patients with CRC. Loss-of-function studies revealed that ZNF280A knockdown inhibited the development and progression of CRC as evident by the inhibition of cell proliferation, colony formation, cell apoptosis, cell cycle distribution, and cell migration in vitro and the repressed tumorigenesis of CRC cells in vivo. Next, we showed that RPS14 was the downstream target of ZNF280A and ZNF280A knockdown promoted the ubiquitination as well as degradation of RPS14 in CRC. Additionally, we demonstrated that RPS14 regulated the development of CRC via PI3K-Akt signaling pathway. Taken together, our findings provide a novel clear insight into ZNF280A/RPS14/PI3K-Akt axis in CRC for the first time, offering a potential target for early detection, diagnosis and treatment of CRC in future clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA