Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260362

RESUMO

In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.

2.
Cureus ; 15(4): e37339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37182020

RESUMO

Although a low-grade vascular tumor, Kaposi sarcoma (KS) can have mucosal, and visceral involvement. Additionally, disfiguring disseminated lesions can be seen in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS). KS may cause lymphatic obstruction leading to chronic lymphedema that further contributes to progressive cutaneous hypertrophy and severe disfigurement in the form of non-filarial elephantiasis nostras verrucosa (ENV). This report highlights a case of a 33-year-old male with AIDS who presented in acute respiratory distress with bilateral lower extremity nodular lesions. We confirmed a diagnosis of KS with overlying ENV via a multi-disciplinary approach. Collaboratively, we optimized our patient and observed adequate treatment response and overall improvement in clinical status. Our report emphasizes the importance of a multi-disciplinary approach in recognizing a rare presentation of ENV. Recognition of the disease and understanding the extent of the disease are crucial in preventing irreversible disease progression and allowing for maximum response.

3.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240781

RESUMO

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Nociceptores/fisiologia , Substância P , Disbiose , Inflamação
4.
Nature ; 610(7933): 744-751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071169

RESUMO

Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.


Assuntos
Tolerância Imunológica , Intestinos , Linfócitos , Microbiota , Linfócitos T Reguladores , Animais , Imunidade Inata , Integrina alfaV/metabolismo , Interleucina-2/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia
5.
Nature ; 609(7925): 159-165, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831503

RESUMO

RORγt is a lineage-specifying transcription factor that is expressed by immune cells that are enriched in the gastrointestinal tract and promote immunity, inflammation and tissue homeostasis1-15. However, fundamental questions remain with regard to the cellular heterogeneity among these cell types, the mechanisms that control protective versus inflammatory properties and their functional redundancy. Here we define all RORγt+ immune cells in the intestine at single-cell resolution and identify a subset of group 3 innate lymphoid cells (ILC3s) that expresses ZBTB46, a transcription factor specifying conventional dendritic cells16-20. ZBTB46 is robustly expressed by CCR6+ lymphoid-tissue-inducer-like ILC3s that are developmentally and phenotypically distinct from conventional dendritic cells, and its expression is imprinted by RORγt, fine-tuned by microbiota-derived signals and increased by pro-inflammatory cytokines. ZBTB46 restrains the inflammatory properties of ILC3s, including the OX40L-dependent expansion of T helper 17 cells and the exacerbated intestinal inflammation that occurs after enteric infection. Finally, ZBTB46+ ILC3s are a major source of IL-22, and selective depletion of this population renders mice susceptible to enteric infection and associated intestinal inflammation. These results show that ZBTB46 is a transcription factor that is shared between conventional dendritic cells and ILC3s, and identify a cell-intrinsic function for ZBTB46 in restraining the pro-inflammatory properties of ILC3s and a non-redundant role for ZBTB46+ ILC3s in orchestrating intestinal health.


Assuntos
Imunidade Inata , Intestinos , Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fatores de Transcrição , Animais , Inflamação/imunologia , Inflamação/patologia , Interleucinas , Intestinos/citologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligante OX40/metabolismo , Receptores CCR6/metabolismo , Células Th17/citologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Interleucina 22
6.
Stem Cells Dev ; 28(2): 101-113, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30328800

RESUMO

Mouse Embryonic Stem Cells (mESCs) are unique in their self-renewal and pluripotency. Hypothetically, mESCs model gestational stress effects or stresses of in vitro fertilization/assisted reproductive technologies or drug/environmental exposures that endanger embryos. Testing mESCs stress responses should diminish and expedite in vivo embryo screening. Transgenic mESCs for green fluorescent protein (GFP) reporters of differentiation use the promoter for platelet-derived growth factor receptor (Pdgfr)a driving GFP expression to monitor hyperosmotic stress-forced mESC proliferation decrease (stunting), and differentiation increase that further stunts mESC population growth. In differentiating mESCs Pdgfra marks the first-lineage extraembryonic primitive endoderm (ExEndo). Hyperosmotic stress forces mESC differentiation gain (Pdgfra-GFP) in monolayer or three-dimensional embryoid bodies. Despite culture with potency-maintaining leukemia inhibitory factor (LIF), stress forces ExEndo as assayed using microplate readers and validated by coexpression of Pdgfra-GFP, Disabled 2 (Dab2), and laminin by immunofluorescence and GFP protein and Dab2 by immunoblot. In agreement with previous reports, Rex1 and Oct4 loss was inversely proportional to increased Pdgfra-GFP mESC after treatment with high hyperosmotic sorbitol despite LIF. The increase in subpopulations of Pdgfra-GFP+ cells>background at ∼23% was similar to the previously reported ∼25% increase in Rex1-red fluorescent protein (RFP)-negative subpopulation at matched high sorbitol doses. By microplate reader, there is a ∼7-11-fold increase in GFP at a high nonmorbid and a morbid dose despite LIF, compared with LIF alone. By flow cytometry (FACS), the subpopulation of Pdgfra-GFP+ cells>background increases ∼8-16-fold at these doses. Taken together, the microplate, FACS, immunoblot, and immunofluorescence data suggest that retinoic acid or hyperosmotic stress forces dose-dependent differentiation whether LIF is present or not and this is negatively correlated with and possibly compensates for stress-forced diminished ESC population expansion and potency loss.


Assuntos
Diferenciação Celular , Linhagem da Célula , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Embrionárias Murinas/citologia , Pressão Osmótica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA