Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 626, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864214

RESUMO

BACKGROUND: Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. METHODS: A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). RESULTS: More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. CONCLUSION: The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.


Assuntos
Capsicum , Phytophthora , Piper nigrum , Transcriptoma , Phytophthora/fisiologia , Piper nigrum/genética , Metaboloma , Flavonoides , Doenças das Plantas/genética
2.
Huan Jing Ke Xue ; 42(9): 4452-4461, 2021 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34414745

RESUMO

A field experiment was conducted in moderately and severely Cd contaminated paddy fields in Beishan Town, Changsha City, Hunan Province. This study examined the effects of LS amendment (limestone+sepiolite), in combination with soil application and foliar spraying of Zn fertilizer, on Cd uptake in early and late rice plants. The results showed that: ① the application of LS (2250 kg·hm-2 and 4500 kg·hm-2) significantly increased pH and CEC values in paddy soil during the early and late rice seasons, but the addition of Zn fertilizer (90 kg/hm2) to soil and through foliar spraying (0.2 g·L-1 and 0.4 g·L-1) had no significant effects on the pH or CEC of the soil. ② LS application decreased concentrations of TCLP-Cd and CaCl2-Cd in the soils, by 11.5%-38.8% and 24.0%-81.0%, respectively, while neither of the treatments involving the addition of Zn fertilizer to soil or through foliar spraying had any significant effects on the concentrations of TCLP-Cd and CaCl2-Cd. ③Single treatments involving only LS amendment, Zn fertilizer in soil, or foliar spraying of Zn fertilizer also reduced Cd concentrations in brown rice, but to a lesser degree than the combined treatments. The combined treatments (L1Z1F1, L1Z1F2, L2Z1F1, and L2Z1F2) reduced Cd concentrations in brown rice by 64.9%-67.5% and 56.1%-80.6%, for early and late rice, respectively, while L2Z1F1 (4500 kg·hm-2 LS+90 kg·hm-2 Zn fertilizer+foliar spraying 0.2 g·L-1 Zn fertilizer) resulted in the largest reduction in Cd concentration in brown rice. ④ The Cd/Zn ratio in brown rice was significantly positively correlated with Cd concentrations, indicating that increased Zn concentration in different rice tissues was one of the key reasons for decreased Cd concentration in brown rice. Clearly, as a remediation technology, combining LS amendments with zinc fertilizer is an effective method for achieving the safe utilization of moderately and severely Cd contaminated paddy fields, by effectively inhibiting the uptake, accumulation, and transportation of Cd in rice plants and decreasing Cd concentrations in brown rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fertilizantes , Solo , Poluentes do Solo/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA