Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(738): eadk1866, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478630

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Imunológicos/metabolismo
2.
Hepatology ; 78(5): 1478-1491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950514

RESUMO

BACKGROUND AND AIMS: The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS: Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS: Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Comunicação Parácrina , Animais , Humanos , Camundongos , Citocinas/genética , Citocinas/metabolismo , Dieta/efeitos adversos , Modelos Animais de Doenças , Interleucinas/metabolismo , Fígado/metabolismo , Mamíferos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Comunicação Parácrina/genética , Comunicação Parácrina/fisiologia
3.
Cell Metab ; 34(9): 1359-1376.e7, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35973424

RESUMO

The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neurregulinas/metabolismo , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Mamíferos/metabolismo , Camundongos , Neurregulinas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Microambiente Tumoral
4.
Sci Adv ; 6(20): eaay6191, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426492

RESUMO

Depletion of fat-resident regulatory T cells (Tregs) and group 2 innate lymphoid cells (ILC2s) has been causally linked to obesity-associated insulin resistance. However, the molecular nature of the pathogenic signals suppress adipose Tregs and ILC2s in obesity remains unknown. Here, we identified the soluble isoform of interleukin (IL)-33 receptor ST2 (sST2) as an obesity-induced adipokine that attenuates IL-33 signaling and disrupts Treg/ILC2 homeostasis in adipose tissue, thereby exacerbates obesity-associated insulin resistance in mice. We demonstrated sST2 is a target of TNFα signaling in adipocytes that is countered by Zbtb7b. Fat-specific ablation of Zbtb7b augments adipose sST2 gene expression, leading to diminished fat-resident Tregs/ILC2s, more pronounced adipose tissue inflammation and fibrosis, and impaired glucose homeostasis in mice. Mechanistically, Zbtb7b suppresses NF-κB activation in response to TNFα through destabilizing IκBα. These findings uncover an adipokine-immune signaling pathway that is engaged in obesity to drive the pathological changes of the immunometabolic landscape.


Assuntos
Resistência à Insulina , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653673

RESUMO

Lipid droplets (LDs) are evolutionarily conserved organelles that play important roles in cellular metabolism. Each LD is enclosed by a monolayer of phospholipids, distinct from bilayer membranes. During LD biogenesis and growth, this monolayer of lipids expands by acquiring phospholipids from the endoplasmic reticulum (ER) through nonvesicular mechanisms. Here, in a mini-screen, we find that ORP5, an integral membrane protein of the ER, can localize to ER-LD contact sites upon oleate loading. ORP5 interacts with LDs through its ligand-binding domain, and ORP5 deficiency enhances neutral lipid synthesis and increases the size of LDs. Importantly, there is significantly more phosphatidylinositol-4-phosphate (PI(4)P) and less phosphatidylserine (PS) on LDs in ORP5-deficient cells than in normal cells. The increased presence of PI(4)P on LDs in ORP5-deficient cells requires phosphatidylinositol 4-kinase 2-α. Our results thus demonstrate the existence of PI(4)P on LDs and suggest that LD-associated PI(4)P may be primarily used by ORP5 to deliver PS to LDs.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Esteroides/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos
6.
Cell Rep ; 28(13): 3406-3422.e7, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553910

RESUMO

Insulin-stimulated hepatic glycogen synthesis is central to glucose homeostasis. Here, we show that PPP1R3G, a regulatory subunit of protein phosphatase 1 (PP1), is directly phosphorylated by AKT. PPP1R3G phosphorylation fluctuates with fasting-refeeding cycle and is required for insulin-stimulated dephosphorylation, i.e., activation of glycogen synthase (GS) in hepatocytes. In this study, we demonstrate that knockdown of PPP1R3G significantly inhibits insulin response. The introduction of wild-type PPP1R3G, and not phosphorylation-defective mutants, increases hepatic glycogen deposition, blood glucose clearance, and insulin sensitivity in vivo. Mechanistically, phosphorylated PPP1R3G displays increased binding for, and promotes dephosphorylation of, phospho-GS. Furthermore, PPP1R3B, another regulatory subunit of PP1, binds to the dephosphorylated GS, thereby relaying insulin stimulation to hepatic glycogen deposition. Importantly, this PP1-mediated signaling cascade is independent of GSK3. Therefore, we reveal a regulatory axis consisting of insulin/AKT/PPP1R3G/PPP1R3B that operates in parallel to the GSK3-dependent pathway, controlling glycogen synthesis and glucose homeostasis in insulin signaling.


Assuntos
Insulina/metabolismo , Glicogênio Hepático/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Transdução de Sinais
7.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398325

RESUMO

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Assuntos
Comunicação Celular/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Animais , Reprogramação Celular/genética , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/genética , Análise de Célula Única
8.
EMBO J ; 38(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858281

RESUMO

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/efeitos dos fármacos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transporte Proteico , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
9.
PLoS Biol ; 17(1): e2006571, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653498

RESUMO

Beiging of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of metabolic diseases through norepinephrine (NE)-mediated signaling pathways. Although previous studies report NE clearance mechanisms via SLC6A2 on sympathetic neurons or proinflammatory macrophages in adipose tissues (ATs), the low catecholamine clearance capacity of SLC6A2 may limit the cleaning efficiency. Here, we report that mouse organic cation transporter 3 (Oct3; Slc22a3) is highly expressed in WAT and displays the greatest uptake rate of NE as a selective non-neural route of NE clearance in white adipocytes, which differs from other known routes such as adjacent neurons or macrophages. We further show that adipocytes express high levels of NE degradation enzymes Maoa, Maob, and Comt, providing the molecular basis on NE clearance by adipocytes together with its reuptake transporter Oct3. Under NE administration, ablation of Oct3 induces higher body temperature, thermogenesis, and lipolysis compared with littermate controls. After prolonged cold challenge, inguinal WAT (ingWAT) in adipose-specific Oct3-deficient mice shows much stronger browning characteristics and significantly elevated expression of thermogenic and mitochondrial biogenesis genes than in littermate controls, and this response involves enhanced ß-adrenergic receptor (ß-AR)/protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (Creb) pathway activation. Glycolytic genes are reprogrammed to significantly higher levels to compensate for the loss of ATP production in adipose-specific Oct3 knockout (KO) mice, indicating the fundamental role of glucose metabolism during beiging. Inhibition of ß-AR largely abolishes the higher lipolytic and thermogenic activities in Oct3-deficient ingWAT, indicating the NE overload in the vicinity of adipocytes in Oct3 KO adipocytes. Of note, reduced functional alleles in human OCT3 are also identified to be associated with increased basal metabolic rate (BMR). Collectively, our results demonstrate that Oct3 governs ß-AR activity as a NE recycling transporter in white adipocytes, offering potential therapeutic applications for metabolic disorders.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Catecolaminas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/genética , Transdução de Sinais , Termogênese/fisiologia
10.
IUBMB Life ; 68(11): 847-853, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650434

RESUMO

Metabolism refers to a chain of chemical reactions converting food/fuel into energy to conduct cellular processes, including the synthesis of the building blocks of the body, such as proteins, lipids, nucleic acids, and carbohydrates, and the elimination of nitrogenous wastes. Metabolic chain reactions are catalyzed by various enzymes that are orchestrated in specific pathways. Metabolic pathways are important for organisms to grow and reproduce, maintain their structures, and respond to their environments. The coordinated regulation of metabolic pathways is important for maintaining metabolic homeostasis. The key steps and crucial enzymes in these pathways have been well investigated. However, the crucial regulatory factors and feedback (or feedforward) mechanisms of nutrients and intermediate metabolites of these biochemical processes remain to be fully elucidated. In addition, the roles of these enzymes and regulatory factors in controlling metabolism under physiological and pathological conditions are largely unknown. In particular, metabolic dysregulation is closely linked to the development of many diseases, including obesity, fatty liver, diabetes, cancer, cardiovascular, cerebrovascular, and neurodegenerative diseases. Therefore, metabolism, an old area of biochemistry, has attracted much attention in the last decade. With substantially increased government funding, the involvement of talented researchers, an improved infrastructure and scientific environment over the last ten years, the basic research in the field of metabolism in China has dramatically advanced. Here, we have summarized the major discoveries of scientists in China in the last decade in the area of metabolism. Due to the vast amount of information, we focused this review on specific aspects of metabolism, particularly metabolic regulation and lipid metabolism in vertebrates. © 2016 IUBMB Life, 68(11):847-853, 2016.


Assuntos
Pesquisa Biomédica/normas , Doenças Metabólicas/metabolismo , Animais , China , Humanos , Metabolismo dos Lipídeos , Doenças Metabólicas/terapia , Redes e Vias Metabólicas , Melhoria de Qualidade
11.
Hepatology ; 56(1): 95-107, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278400

RESUMO

UNLABELLED: High levels of dietary saturated fat have been closely associated with the development of hepatic steatosis, but the factors that mediate this process remain elusive. Here, we observed that the level of cell death-inducing DNA fragmentation factor-alpha-like effector a (Cidea) expression was highly correlated with the severity of hepatic steatosis in humans. Overexpression of Cidea in mouse liver resulted in increased hepatic lipid accumulation and the formation of large lipid droplets (LDs). In contrast, mice with a Cidea deficiency had decreased lipid accumulation and alleviated hepatic steatosis when they received a high-fat-diet feeding or in ob/ob mice. Furthermore, the knockdown of Cidea in livers of ob/ob mice resulted in significantly reduced hepatic lipid accumulation and smaller LDs. Importantly, we observed that Cidea expression in hepatocytes was specifically induced by saturated fatty acids (FAs), and such induction was reduced when sterol response element-binding protein (SREBP)1c was knocked down. In contrast, the overexpression of SREBP1c restored the saturated FA-induced expression of Cidea. In addition, we observed that the stability of Cidea protein in hepatocytes increased significantly in response to treatment with FAs. CONCLUSION: Cidea plays critical roles in promoting hepatic lipid accumulation and in the development of hepatic steatosis by acting as a sensor that responds to diets that contain FAs.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Fígado Gorduroso/genética , Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA