Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474173

RESUMO

Transgenic technology is a crucial tool for gene functional analysis and targeted genetic modification in the para rubber tree (Hevea brasiliensis). However, low efficiency of plant regeneration via somatic embryogenesis remains a bottleneck of successful genetic transformation in H. brasiliensis. Enhancing expression of GROWTH-REGULATING FACTOR 4 (GRF4)-GRF-INTERACTING FACTOR 1 (GIF1) has been reported to significantly improve shoot and embryo regeneration in multiple crops. Here, we identified endogenous HbGRF4 and HbGIF1 from the rubber clone Reyan7-33-97, the expressions of which dramatically increased along with somatic embryo (SE) production. Intriguingly, overexpression of HbGRF4 or HbGRF4-HbGIF1 markedly enhanced the efficiency of embryogenesis in two H. brasiliensis callus lines with contrasting rates of SE production. Transcriptional profiling revealed that the genes involved in jasmonic acid response were up-regulated, whereas those in ethylene biosynthesis and response as well as the S-adenosylmethionine-dependent methyltransferase activity were down-regulated in HbGRF4- and HbGRF4-HbGIF1-overexpressing H. brasiliensis embryos. These findings open up a new avenue for improving SE production in rubber tree, and help to unravel the underlying mechanisms of HbGRF4-enhanced somatic embryogenesis.


Assuntos
Hevea , Hevea/genética , Borracha/metabolismo , Látex , Regulação da Expressão Gênica de Plantas
2.
Anal Methods ; 16(11): 1639-1648, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414387

RESUMO

Benefiting from our discovery that ß-cyclodextrin (ß-CD) could enhance the catalytic activity of invertase through hydrogen bonding to improve detection sensitivity, a highly sensitive and convenient biosensor for the detection of miR-21 was proposed, which is based on the simplicity of reading signals from a personal glucose meter (PGM), combined with self-assembled signal amplification probes and the performance of ß-CD as an enhancer. In the presence of miR-21, magnetic nanoparticle coupled capture DNA (MNPs-cDNA) could capture it and then connect assist DNA/H1-invertase (aDNA/H1) and self-assembled signal amplification probes (H1/H2) in turn. As a result, a "super sandwich" structure was formed. The invertase on MNPs-cDNA could catalyze the hydrolysis of sucrose to glucose and this catalytic process could be enhanced by ß-CD. The PGM signal exhibited a linear correlation with miR-21 concentration within the range of 25 pmol L-1 to 3 nmol L-1, and the detection limit was as low as 5 pmol L-1 with high specificity. Moreover, the recoveries were 103.82-124.65% and RSD was 2.59-6.43%. Furthermore, the biosensor was validated for the detection of miR-21 in serum, and the results showed that miR-21 levels in serum samples from patients with Diffuse Large B-Cell Lymphoma (DLBCL) (n = 12) were significantly higher than those from healthy controls (n = 12) (P < 0.001). Therefore, the ingenious combination of PGM-based signal reading, self-assembled signal amplification probes and ß-CD as an enhancer successfully constructed a convenient, sensitive and specific biosensing method, which is expected to be applied to clinical diagnosis.


Assuntos
Automonitorização da Glicemia , MicroRNAs , Humanos , DNA Complementar , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/química , Glucose , DNA/genética
3.
Int J Biol Macromol ; 259(Pt 2): 129083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163511

RESUMO

Inspired by the mussel, tannic acid (TA) was modified onto the surface of self-made cellulose nanofibrils (CNFs) to prepare TA@CNFs, which was introduced into borax crosslinked polyvinyl alcohol (PVA) to prepare PTC double-network hydrogel with self-healing properties. Through the comparative observation of TEM images and infrared spectra before and after tannic acid modification, the formation of TA@CNFs was proved. The introduction of TA@CNFs greatly increases the fracture stress of PTC hydrogel, which is more than 10 times higher than that of PVA hydrogel without TA@CNFs, and has high fracture strain (1723 %). Moreover, PTC hydrogel has the ability of rapid self-healing, which can heal to the original form within two minutes. In addition, the temperature response ability of PTC hydrogel makes it capable of reshaping. The self-adhesion ability of PTC hydrogel enables it to adhere to the human epidermis to detect motion signals, as sensitive and as stable as a flexible sensor.


Assuntos
Celulose , Hidrogéis , Polifenóis , Humanos , Adesivos , Cimentos de Resina
4.
Eur Cytokine Netw ; 34(3): 21-27, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038682

RESUMO

Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the M2 type, suppressing LPS-induced activation, mediated by the JAK2/STAT5 pathway. Moreover, TSLP also promoted the expression of macrophage markers in the absence of LPS. These findings support the hypothesis that TSLP plays a role in reducing neuroinflammation by blocking the JAK2/STAT5 pathway induced by LPS, thus indicating a regulatory role in the central nervous system. Targeting this cytokine might provide a novel strategy for controlling an inflammatory response in the central nervous system.


Assuntos
Doenças Neuroinflamatórias , Linfopoietina do Estroma do Timo , Humanos , Microglia/metabolismo , Fator de Transcrição STAT5/metabolismo , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Inflamação , Macrófagos/metabolismo , Janus Quinase 2/metabolismo
5.
J Hematol Oncol ; 16(1): 84, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501059

RESUMO

Hyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in participants with PLT ≥ 291 × 109/L (full adjusted ß, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories of megakaryopoiesis from human umbilical cord blood (hUCB) CD34+ cells. Together with in vitro and in vivo analysis, we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Administration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mechanisms by which HHcy confers an increased thrombotic risk.Trial Registration clinicaltrials.gov Identifier: NCT00794885.


Assuntos
Hiper-Homocisteinemia , Melatonina , Humanos , Camundongos , Animais , Trombopoese/genética , Megacariócitos , Plaquetas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Peixe-Zebra , Hormônio do Crescimento/farmacologia , Melatonina/farmacologia , Hiper-Homocisteinemia/complicações , Diferenciação Celular
6.
Cell Biol Toxicol ; 39(6): 3077-3100, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37495868

RESUMO

Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.


Assuntos
Hiper-Homocisteinemia , Células Intersticiais do Testículo , Camundongos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Testosterona , Hiper-Homocisteinemia/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/genética
7.
Basic Clin Pharmacol Toxicol ; 132(1): 71-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36180969

RESUMO

Intramuscular injections of progesterone (P4) are common during assisted reproduction, which can cause painful injection area reactions, and the current study was therefore initiated to determine whether P4 was involved in these adverse local effects. Female Sprague-Dawley rats were given daily intramuscular injection of vehicle oil or P4-in-oil with or without dermal administration of ketoprofen (Ket) gel at right biceps femoris muscle of hindlimb for 5 weeks. It was found that rats receiving repeated vehicle oil injections developed nociception-related behaviours together with induration formation and dorsal root ganglion (DRG) damage, indicating that the vehicle oil contributed to the side-effect reactions. Interestingly, P4 injections caused more nociception-related behaviours than those of vehicle oil as reflected by both nociception score and muscle withdrawal threshold evaluations, which were impressively relieved by Ket. In fact, P4 induced higher induration occurrence rate with larger volume that was alleviated by Ket. Further ELISA assays supported that P4 rather than vehicle oil profoundly elevated inflammatory factor levels. Moreover, an extensive upregulation of Nav 1.8 was observed at L2, L3, and L5 of DRG in response to P4, indicating a sole role of P4 in Nav 1.8 upregulation. Collectively, P4 may contribute to the painful injection area reactions via stimulating inflammation and DRG Nav 1.8 upregulation in rats.


Assuntos
Gânglios Espinais , Progesterona , Ratos , Feminino , Animais , Progesterona/farmacologia , Injeções Intramusculares , Ratos Sprague-Dawley , Dor/induzido quimicamente , Dor/tratamento farmacológico
8.
EBioMedicine ; 86: 104312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335669

RESUMO

BACKGROUND: The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS: RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS: Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION: This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS: Stated in the Acknowledgements section of the manuscript.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Fator Inibidor de Leucemia/genética , Rim/metabolismo , Interleucina-6/genética , Estudos Prospectivos , Proteínas Hedgehog , Fibrose , Insuficiência Renal Crônica/patologia
9.
Chin Med J (Engl) ; 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35830185

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's dementia. Mitochondrial dysfunction is involved in the pathology of PD. Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was identified as associated with autosomal dominant PD. However, the mechanism of CHCHD2 in PD remains unclear. METHODS: Short hairpin RNA (ShRNA)-mediated CHCHD2 knockdown or lentivirus-mediated CHCHD2 overexpression was performed to investigate the impact of CHCHD2 on mitochondrial morphology and function in neuronal tumor cell lines represented with human neuroblastoma (SHSY5Y) and HeLa cells. Blue-native polyacrylamide gel electrophoresis (PAGE) and two-dimensional sodium dodecyl sulfate-PAGE analysis were used to illustrate the role of CHCHD2 in mitochondrial contact site and cristae organizing system (MICOS). Co-immunoprecipitation and immunoblotting were used to address the interaction between CHCHD2 and Mic10. Serotype injection of adeno-associated vector-mediated CHCHD2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration were used to examine the influence of CHCHD2 in vivo. RESULTS: We found that the overexpression of CHCHD2 can protect against methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and inhibit the loss of dopaminergic neurons in the MPTP-induced mouse model. Furthermore, we identified that CHCHD2 interacted with Mic10, and overexpression of CHCHD2 can protect against MPP+-induced MICOS impairment, while knockdown of CHCHD2 impaired the stability of MICOS. CONCLUSION: This study indicated that CHCHD2 could interact with Mic10 and maintain the stability of the MICOS complex, which contributes to protecting mitochondrial function in PD.

10.
Acta Pharm Sin B ; 12(6): 2905-2922, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755272

RESUMO

The p21 activated kinase 4 (PAK4) is serine/threonine protein kinase that is critical for cancer progression. Guided by X-ray crystallography and structure-based optimization, we report a novel subseries of C-3-substituted 6-ethynyl-1H-indole derivatives that display high potential and specificity towards group II PAKs. Among these inhibitors, compound 55 exhibited excellent inhibitory activity and kinase selectivity, displayed superior anti-migratory and anti-invasive properties against the lung cancer cell line A549 and the melanoma cell line B16. Compound 55 exhibited potent in vivo antitumor metastatic efficacy, with over 80% and 90% inhibition of lung metastasis in A549 or B16-BL6 lung metastasis models, respectively. Further mechanistic studies demonstrated that compound 55 mitigated TGF-ß1-induced epithelial-mesenchymal transition (EMT).

11.
Neurosci Bull ; 38(6): 637-651, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35267139

RESUMO

Previous studies suggest that the reduction of SMAD3 (mothers against decapentaplegic homolog 3) has a great impact on tumor development, but its exact pathological function remains unclear. In this study, we found that the protein level of SMAD3 was greatly reduced in human-grade IV glioblastoma tissues, in which LAMP2A (lysosome-associated membrane protein type 2A) was significantly up-regulated. LAMP2A is a key rate-limiting protein of chaperone-mediated autophagy (CMA), a lysosome pathway of protein degradation that is activated in glioma. We carefully analyzed the amino-acid sequence of SMAD3 and found that it contained a pentapeptide motif biochemically related to KFERQ, which has been proposed to be a targeting sequence for CMA. In vitro, we confirmed that SMAD3 was degraded in either serum-free or KFERQ motif deleted condition, which was regulated by LAMP2A and interacted with HSC70 (heat shock cognate 71 kDa protein). Using isolated lysosomes, amino-acid residues 75 and 128 of SMAD3 were found to be of importance for this process, which affected the CMA pathway in which SMAD3 was involved. Similarly, down-regulating SMAD3 or up-regulating LAMP2A in cultured glioma cells enhanced their proliferation and invasion. Taken together, these results suggest that excessive activation of CMA regulates glioma cell growth by promoting the degradation of SMAD3. Therefore, targeting the SMAD3-LAMP2A-mediated CMA-lysosome pathway may be a promising approach in anti-cancer therapy.


Assuntos
Autofagia Mediada por Chaperonas , Glioma , Proteína 2 de Membrana Associada ao Lisossomo , Proteína Smad3 , Autofagia/fisiologia , Proliferação de Células , Glioma/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Proteína Smad3/metabolismo
12.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 24-32, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33834547

RESUMO

Intestinal absorption of peptides is vital for the overall health and productivity of dairy cows. This study investigated the regulation, uptake and transport of dipeptides in bovine intestinal epithelial cells (BIECs). We also evaluated the effects of time, pH, concentration of the dipeptides, temperature, presence of diethylpyrocarbonate (DEPC)-an inhibitor of PepT1, and other dipeptides (Met-Met, Lys-Lys or Met-Lys), on the uptake and transport of Gly-Sar-FITC, which was a common fluorophore-labelled dipeptide. Under controlled experiments, BIECs were treated with 25 µM LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) and 25 µM Perifosine (a protein kinase B (AKT) inhibitor). The subsequent expression of PepT1 in the BIECs was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. It was found that the uptake and transport of Gly-Sar-FITC were significant high at 37℃ than that at 4℃. The optimal pH for transport and uptake of Gly-Sar-FITC was 6.0-6.5, whereas the two properties decreased significantly in the presence of DEPC, Met-Met, Lys-Lys and Met-Lys (p < 0.05). The apical-to-basolateral transport was also found to be significantly higher than the reverse transport (p < 0.05). PI3K and AKT inhibitors were found to significantly suppress the expression of PepT1, thus impairing uptake and transport of Gly-Sar-FITC. Findings of this study thus suggest that the uptake and transport of Gly-Sar-FITC in BIECs are mediated by PepT1, and the PI3K/AKT signalling pathway regulates the absorption of small peptides.


Assuntos
Fosfatidilinositol 3-Quinases , Simportadores , Animais , Transporte Biológico , Células CACO-2 , Bovinos , Dipeptídeos , Células Epiteliais/metabolismo , Feminino , Humanos , Transportador 1 de Peptídeos , Simportadores/genética , Simportadores/metabolismo
13.
Kidney Blood Press Res ; 47(1): 61-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788763

RESUMO

BACKGROUND: Trimethylamine-N-oxide (TMAO) is an intestinal metabolic toxin, which is produced by gut flora via metabolizing high-choline foods. TMAO is known to increase the risk of atherosclerosis and cardiovascular events in chronic kidney disease (CKD) patients. OBJECTIVES: The objective of this study was to explore the role and mechanism of TMAO aggravating kidney injury. METHOD: We used the five-sixths nephrectomy (5/6 Nx)-induced CKD rats to investigate whether TMAO could aggravate kidney damage and its possible mechanisms. Six weeks after the operation, the two groups of 5/6 Nx rats were subjected to intraperitoneal injection with 2.5% glucose peritoneal dialysis fluid (2.5% PDF) and 2.5% PDF plus TMAO 20 mg/kg/day. RESULTS: In this study, we provided evidence showing TMAO significantly aggravated renal failure as well as inflammatory cell infiltration and in five-sixths nephrectomy-induced CKD rats. We found that TMAO could upregulate inflammatory factors including MCP-1, TNF-α, IL-6, IL-1ß, and IL-18 by activating p38 phosphorylation and upregulation of human antigen R. TMAO could aggravate oxidative stress by upregulating NOX4 and downregulating SOD. The result also confirmed that TMAO promoted NLRP3 inflammasome formation as well as cleaved caspase-1 and IL-1ß activation in the kidney tissue. CONCLUSIONS: Taken together, the present study validates TMAO as a pro-inflammatory factor that causes renal inflammatory injury and renal function impairment. Inhibition of TMAO synthesis or promoting its clearance may be a potential therapeutic approach of CKD in the future.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Metilaminas/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/patologia , Regulação para Cima
14.
ACS Appl Mater Interfaces ; 13(34): 41112-41119, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406738

RESUMO

Low surface energy materials resist adhesion due to their chemical inertness and non-wetting properties. Herein, we report the creation of a transparent ionogel adhesive that uses ion-dipole interactions to achieve a higher bonding performance to polytetrafluoroethylene (PTFE) relative to most commercial glues. The ionogel adhesive is composed of a poly(hexafluorobutyl acrylate-co-methyl methacrylate) random copolymer and a hydrophobic ionic liquid. The prepared ionogel can adhere to various hydrophobic substrates, such as PTFE, polypropylene, and polyethylene, as well as hydrophilic glass, ceramics, and steel. The design strategy and adhesion behavior are well interpreted using the density functional theory calculations and molecular dynamics simulations. The straightforward ultraviolet-curing method, high optical clarity, versatile adhesion ability, and reversible adhesion capabilities make this high-performance adhesive a promising product for commercialization.

15.
FEBS Open Bio ; 11(4): 1195-1208, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565732

RESUMO

Frizzled 2 (FZD2) is an important receptor in the Wnt pathway, which is highly expressed in malignant tumors and helps regulate multiple tumor behaviors. Its expression level is related to prognosis. Here, bioinformatic analysis was performed to understand the expression of FZD2 in different tumors. We examined FZD2 expression using pan-cancer data of 33 cancer types from The Cancer Genome Atlas (TCGA). Differential expression analysis (Wilcoxon's test) was used to compare tumor and normal tissues. Univariate Cox proportional hazard regression was performed to compare gene expression and overall patient survival. COSMIC, cBioPortal, and CCLE were used to examine FZD2 mutations in human cancers. Dryness index was calculated using one-class logistic regression (OCLR). Spearman's correlation was performed based on gene expression and dryness score and used to analyze the correlation between gene expression and stemness score, matrix score, immune score, estimated score, tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity. STRING website was used to construct an FZD2 protein interaction network and identify genes that interact with FZD2. We report that FZD2 is highly expressed in most tumors, differing between cancer types. Expression was related to patient overall survival (OS), disease-specific survival, disease-free interval (DFI), mutations, drug sensitivity, tumor microenvironment, immune cell infiltration, immune checkpoint gene expression, immunotherapy indicators (TMB, MSI), and tumor cell stemness. FZD2 influenced drug sensitivities, including cobimetinib (r = -0.553, P < 0.001), selumetinib (r = -0.539, P < 0.001), bafetinib (r = -0.538, P < 0.001), tamoxifen (r = -0.523, P < 0.001), alvespimycin (r = -0.520, P < 0.001), and nilotinib (r = -0.502, P < 0.001). FZD2 has the most significant correlation with ROR2 (r = 0.4, P < 0.001), Wnt2 (r = 0.37, P < 0.001), and Wnt4A (r = 0.34, P < 0.001). The results confirm the importance of FZD2 expression in cancer prognosis and treatment, and provide new clues for treatment strategies.


Assuntos
Biomarcadores Tumorais , Receptores Frizzled/genética , Neoplasias/diagnóstico , Neoplasias/etiologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/genética , Receptores Frizzled/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Instabilidade de Microssatélites , Mutação , Neoplasias/metabolismo , Neoplasias/mortalidade , Células-Tronco Neoplásicas/metabolismo , Especificidade de Órgãos/genética , Prognóstico , Microambiente Tumoral/genética
16.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166081, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486098

RESUMO

Tubulointerstitial fibrosis is the ultimate common pathway of all manners of chronic kidney disease. We previously demonstrated that specific deletion of Numb in proximal tubular cells (PTCs) prevented G2/M arrest and attenuated renal fibrosis. However, how Numb modulates cell cycle arrest remains unclear. Here, we showed that Numb overexpression significantly increased the protein level of hypoxia-inducible factor-1α (HIF-1α). Numb overexpression-induced G2/M arrest was blocked by silencing endogenous HIF-1α, subsequently downregulated the expression of cyclin G1 which is an atypical cyclin to promote G2/M arrest of PTCs. Further analysis revealed that Numb-augmented HIF-1α protein was blocked by simultaneously overexpressing MDM2. Moreover, silencing Numb decreased TGF-ß1-induceded HIF-1α protein expression. While endogenous MDM2 was knocked down this reduction was reversed, indicating that Numb stabilized HIF-1α protein via interfering MDM2-mediated HIF-1α protein degradation. Interestingly, HIF-1α overexpression significantly upregulated the expression of Numb and silencing endogenous HIF-1α blocked CoCl2 or TGF-ß1-induced Numb expression. Chromatin immunoprecipitation (ChIP) assays demonstrated that HIF-1α binded to the promoter region of Numb. This binding was significantly increased by TGF-ß1. Collectively, these data indicate that Numb and HIF-1α cooperates to promote G2/M arrest of PTCs, and thus aggravates tubulointerstitial fibrosis. Numb might be a potential target for the therapy of tubulointerstitial fibrosis.


Assuntos
Fibrose/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Nefropatias/patologia , Túbulos Renais/patologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Fibrose/etiologia , Fibrose/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética
17.
Fitoterapia ; 146: 104667, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540380

RESUMO

The plants of genus Toona are well known for diverse limonoid secondary metabolites, while polyacetylenes are rarely found from Toona species. In this work, six new polyacetylenes toonasindiynes A-F (1-6) and six known analogues (7-12) were isolated from the root bark of Toona sinensis. Their structures and absolute configurations were elucidated by HRESIMS, 1D and 2D NMR spectroscopic analysis, modified Mosher's method, and biosynthetic consideration. These polyacetylenes share the same 4,6-diyne moiety with different side chain length and different oxidation degree. Bioactivity screening revealed the cytotoxic activity of 3, 5, 9, and 11 against U2OS cells, and the inhibitory effects on nitric oxide (NO) production of 1, 2, 5, 8, 9, and 11 in lipopolysaccharide-induced RAW 264.7 cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Polímero Poliacetilênico/farmacologia , Toona/química , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , China , Humanos , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Polímero Poliacetilênico/isolamento & purificação , Células RAW 264.7
18.
Mater Sci Eng C Mater Biol Appl ; 109: 110523, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228959

RESUMO

For hepatocyte culture in vitro, the surface feature of utilized scaffolds exerts a direct impact on cell adhesion, growth and differentiated functionality. Herein, to regulate hepatocyte growth and differentiated functionality, modified microfibrous scaffolds were fabricated by surface grafting monoamine terminated lactobionic lactone (L-NH2) and gelatin onto non-woven poly(ethylene terephthalate) (PET) fibrous substrate (PET-Gal and PET-Gel), respectively. The physicochemical properties of PET scaffolds before and after modification were characterized. Upon 15-day culture, the effects of modified PET scaffolds on growth and differentiated functionality of human induced hepatocytes (hiHeps) were evaluated, compared with that of control without modification. Results demonstrated that both L-NH2 and gelatin modifications improved scaffold properties including hydrophilicity, water uptake ratio, stiffness and roughness, resulting in efficient cell adhesion, ~20-fold cell expansion and enhanced differentiated functionality. After culture for 15 days, PET-Gal cultured cells formed aggregates, displaying better cell viability and significantly higher differentiated functionality regarding albumin secretion, urea synthesis, phases I (cytochrome P450, CYP1A1/2 and CYP3A4) and II (uridine 5'-diphosphate glucuronosyltransferases, UGT) enzyme activity, biliary excretion and detoxification ability (ammonia elimination and bilirubin conjugation), compared with PET and PET-Gel cultured ones. Hence, as a three-dimensional (3D) microfibrous scaffold, PET-Gal promotes hiHeps growth and differentiated functionality maintenance, which is promisingly utilized in bioartificial liver (BAL) bioreactors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hepatócitos/metabolismo , Teste de Materiais , Polietilenotereftalatos/química , Alicerces Teciduais/química , Reatores Biológicos , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Humanos
19.
Theranostics ; 10(7): 3000-3021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194851

RESUMO

Rationale: Contactin-associated protein-like 4 (CNTNAP4) belongs to the neurexin superfamily and has critical functions in neurological development and synaptic function. Loss of CNTNAP4 in interneurons has been linked to autism, schizophrenia, and epilepsy. CNTNAP4 is also highly enriched in dopaminergic (DA) neurons in the substantia nigra (SN), however, few studies have investigated the role of CNTNAP4 in DA neurons, and whether CNTNAP4 deficiency in DA neurons contributes to Parkinson's disease (PD) remains unclear. Methods: Effects of CNTNAP4 knockdown or overexpression on the DA MN9D cell line were assessed via Western blotting, immunocytochemistry, and RNA sequencing. An in vivo animal model, including CNTNAP4 knockout mice and stereotaxic injections of adeno-associated viral short-hairpin RNA with the tyrosine-hydroxylase promotor to silence CNTNAP4 in the SN, as well as the resulting physiological/behavioral effects, were evaluated via behavioral tests, Western blotting, immunohistochemistry, and transmission electron microscopy. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the cerebrospinal fluid (CSF) and plasma CNTNAP4 concentrations in PD patients. Results: We demonstrated that CNTNAP4 knockdown induced mitophagy and increased α-synuclein expression in MN9D cells. CNTNAP4 knockdown in the SN induced PD-like increases in SN-specific α-synuclein expression, DA neuronal degeneration, and motor dysfunction in mice. In addition, CNTNAP4 knockdown in SN-DA neurons increased autophagosomes and reduced synaptic vesicles in the SN. Furthermore, CNTNAP4 knockout mice showed movement deficits, nigral DA degeneration, and increased autophagy, which were consistent with the SN-specific knockdown model. We also found that CSF and plasma CNTNAP4 expression was increased in PD patients; in particular, plasma CNTNAP4 was increased in male PD patients compared with controls or female PD patients. Conclusion: Our findings suggest that CNTNAP4 deficiency may initiate phenotypes relevant to PD, of which we elucidated some of the underlying mechanisms.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Transtornos Parkinsonianos/metabolismo , Animais , Linhagem Celular , Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Potencial da Membrana Mitocondrial , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitofagia , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/fisiologia , Transtornos Parkinsonianos/patologia , Fenótipo , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Técnicas Estereotáxicas , Substância Negra/metabolismo , Substância Negra/patologia , Sinapsinas/biossíntese , Sinapsinas/genética , Transcriptoma , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
20.
Int J Pharm ; 564: 10-21, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974193

RESUMO

Direct compaction (DC) attracts more and more attention for tablet manufacturing; however, its application in natural plant product (NPP) tablets is still extremely limited. In this study, 8 kinds of composite particles (CPs) based on the Zingiberis Rhizoma extracted powder (ZR) (a natural plant product powder with poor DC properties) were prepared with different shell materials, including hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), dextran, inulin, mannitol, silica, and their combinations. Their physical properties and compacting parameters were characterized comprehensively. The results demonstrated that (i) fluid bed coating was not a simple process of superposition and transmission of the physical properties of raw materials; and (ii) all the shell materials studied could improve the DC properties of problematic ZR to some degree and the combination of 7% HPMC and 1% silica showed to be the best to markedly improve both the compactibility and flowability of ZR. As a whole, by virtue of the design of core-shell particles, qualified tablets with high ZR loadings were successfully produced via continuous DC in this study. These findings are beneficial to boosting the development of natural plant tablets through DC.


Assuntos
Extratos Vegetais/química , Rizoma , Zingiber officinale , Dextranos/química , Composição de Medicamentos , Derivados da Hipromelose/química , Inulina/química , Manitol/química , Tamanho da Partícula , Povidona/química , Pós , Dióxido de Silício/química , Propriedades de Superfície , Comprimidos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA