Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Mol Pharmacol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258595

RESUMO

BACKGROUND: This study aimed to investigate the influence of Notch1 on c-Fos and the effect of c-Fos on the proliferation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected neuronal cells. METHODS: Real-time PCR and western blotting were used to determine c-Fos expression levels in KSHV-infected (SK-RG) and uninfected SH-SY5Y cells. C-Fos levels were measured again in SK-RG cells with or without Notch1 knockdown. Next, we measured c-Fos and p-c-Fos concentrations after treatment with the Notch1 γ-secretase inhibitor LY-411575 and the Notch1 activator Jagged-1. MTT and Ki-67 staining were used to evaluate the proliferation ability of cells after c-Fos levels downregulation. CyclinD1, CDK6, and CDK4 expression levels and cell cycle were analyzed by western blotting and flow cytometry, respectively. After the c-Fos intervention, the KSHV copy number and gene expression of RTA, LANA and K8.1 were analyzed by real-time TaqMan PCR. RESULTS: C-Fos was up-regulated in KSHV-infected SK-RG cells. However, the siRNA-mediated knockdown of Notch1 resulted in a significant decrease in the levels of c-Fos and p-c-Fos (P <0.01, P <0.001). Additionally, a decrease in Cyclin D1, CDK6, and CDK4 was also detected. The Notch1 inhibitor LY-411575 showed the potential to down-regulate the levels of c-Fos and p-c-Fos, which was consistent with Notch1 knockdown group (P <0.01), whereas the expression and phosphorylation of c-Fos were remarkably up-regulated by treatment of Notch1 activator Jagged-1 (P <0.05). In addition, our data obtained by MTT and Ki-67 staining revealed that the c-Fos down-regulation led to a significant reduction in cell viability and proliferation of the SK-RG cells (P <0.001). Moreover, FACS analysis showed that the cell cycle was arrested in the G0/G1 stage, and the expressions of Cyclin D1, CDK6, and CDK4 were down-regulated in the c-Fos-knockdown SK-RG cells (P <0.05). Reduction in total KSHV copy number and expressions of viral genes (RTA, LANA and K8.1) were also detected in c-Fos down-regulated SK-RG cells (P <0.05). CONCLUSION: Our findings strongly indicate that c-Fos plays a crucial role in the promotion of cell proliferation through Notch1 signaling in KSHV-infected cells. Furthermore, our results suggest that the inhibition of expression of key viral pathogenic proteins is likely involved in this process.

2.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513385

RESUMO

The kisspeptin system is a central modulator of the hypothalamic-pituitary-gonadal axis in vertebrates. Its existence outside the vertebrate lineage remains largely unknown. Here, we report the identification and characterization of the kisspeptin system in the sea cucumber Apostichopus japonicus. The gene encoding the kisspeptin precursor generates two mature neuropeptides, AjKiss1a and AjKiss1b. The receptors for these neuropeptides, AjKissR1 and AjKissR2, are strongly activated by synthetic A. japonicus and vertebrate kisspeptins, triggering a rapid intracellular mobilization of Ca2+, followed by receptor internalization. AjKissR1 and AjKissR2 share similar intracellular signaling pathways via Gαq/PLC/PKC/MAPK cascade, when activated by C-terminal decapeptide. The A. japonicus kisspeptin system functions in multiple tissues that are closely related to seasonal reproduction and metabolism. Overall, our findings uncover for the first time the existence and function of the kisspeptin system in a non-chordate species and provide new evidence to support the ancient origin of intracellular signaling and physiological functions that are mediated by this molecular system.


Assuntos
Kisspeptinas , Receptores de Kisspeptina-1 , Transdução de Sinais , Stichopus , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Kisspeptinas/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Stichopus/genética , Stichopus/fisiologia
3.
J Nutr ; 150(4): 672-684, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858105

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Hepatic de novo lipogenesis (DNL) has been suggested to contribute to the pathogenesis of NAFLD. Recent studies have demonstrated that niacin (NA) modulates hepatic DNL through GPR109A. However, the underlying mechanism remains largely unknown. OBJECTIVES: This study aims to elucidate the potential molecular mechanism by which GPR109A inhibits hepatic DNL. METHODS: C57BL/6 wild-type (WT) and Gpr109a knockout (KO) mice (male, 5 wk old) were fed a high-fat diet (60% energy from fat) firstly for 6 wk to generate a diet-induced obese model. Subsequently, they were randomly divided into 4 groups for the next 8-9 wk: WT mice with oral water [WT + vehile (VE)], WT mice with oral NA (50 mM, dissolved in water) (WT + NA), KO mice with oral water (KO + VE), and KO mice with oral NA (50 mM) (KO + NA). Mechanisms were examined in HepG2 cells. Body composition, liver histology, biomarkers of hepatic function, lipid accumulation, and lipid synthesis signals in HepG2 cells were measured. RESULTS: Upon activation, GPR109A apparently protected against obesity and hepatic steatosis (P < 0.05). The concentrations of hepatic Tnf-α in the WT + NA group were about 50% of those in the WT + VE group (P < 0.05). The activities of serum alanine transaminase and aspartate transaminase were 26.7% and 53.5% lower in the WT + NA group than in the WT + VE group, respectively (P < 0.05). In HepG2 cells, activation of GPR109A resulted in remarkable inhibition of oleic acid-induced lipid accumulation via a protein kinase C-extracellular signal-regulated kinase-1/2-AMP-activated protein kinase signaling pathway. CONCLUSIONS: NA inhibits hepatic lipogenesis in C57BL/6 mice through a GPR109A-mediated signaling pathway, consistent with the mechanistic studies in HepG2 cells, suggesting its potential for treatment of NAFLD and other fatty liver diseases.


Assuntos
Adenilato Quinase/metabolismo , Lipogênese/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Niacina/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Acoplados a Proteínas G/fisiologia , Animais , Dieta Hiperlipídica , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Obesidade/prevenção & controle , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais
4.
Mol Cancer Res ; 17(4): 963-973, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30567972

RESUMO

Uveal melanoma is the most common intraocular tumor in adults and often metastasizes to the liver, leaving patients with few options. Recurrent activating mutations in the G proteins, Gαq and Gα11, are observed in approximately 93% of all uveal melanomas. Although therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating uveal melanoma, we have found that the Gαq/11 inhibitor, FR900359 (FR), effectively inhibits oncogenic Gαq/11 signaling in uveal melanoma cells expressing either mutant Gαq or Gα11. Inhibition of oncogenic Gαq/11 by FR results in cell-cycle arrest and induction of apoptosis. Furthermore, colony formation is prevented by FR treatment of uveal melanoma cells in 3D-cell culture, providing promise for future in vivo studies. This suggests direct inhibition of activating Gαq/11 mutants may be a potential means of treating uveal melanoma. IMPLICATIONS: Oncogenic Gαq/11 inhibition by FR900359 may be a potential treatment option for those with uveal melanoma.


Assuntos
Depsipeptídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Melanoma/tratamento farmacológico , Neoplasias Uveais/tratamento farmacológico , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/isolamento & purificação , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Insetos/citologia , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Melanoma/patologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
5.
Stem Cell Reports ; 10(3): 808-821, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29456182

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death in young individuals. A potential role of mtDNA mutations in HCM is known. However, the underlying molecular mechanisms linking mtDNA mutations to HCM remain poorly understood due to lack of cell and animal models. Here, we generated induced pluripotent stem cell-derived cardiomyocytes (HCM-iPSC-CMs) from human patients in a maternally inherited HCM family who carry the m.2336T>C mutation in the mitochondrial 16S rRNA gene (MT-RNR2). The results showed that the m.2336T>C mutation resulted in mitochondrial dysfunctions and ultrastructure defects by decreasing the stability of 16S rRNA, which led to reduced levels of mitochondrial proteins. The ATP/ADP ratio and mitochondrial membrane potential were also reduced, thereby elevating the intracellular Ca2+ concentration, which was associated with numerous HCM-specific electrophysiological abnormalities. Our findings therefore provide an innovative insight into the pathogenesis of maternally inherited HCM.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Miócitos Cardíacos/patologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , RNA Ribossômico 16S/genética
6.
Cytokine ; 102: 62-75, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276973

RESUMO

Previously our lab has created a mouse ovarian xenograft model of copy number variation (CNV)-mediated G protein-coupled receptor (GPCR) MAS-driven tumorigenesis, and RNA profiling identified a putative chemokine tumor-induced factor (Tif). Sequence analysis and chemotactic study suggested that Tif was likely to be a hamster homolog of human GROγ (CXCL3) [IJC 125 (2009): 1316-1327]. In the present study, we report the molecular and functional characterization of the Tif gene. Genomic study of CHO-K1 cells indicated that Tif gene consisted of 4 exons, characterized with an antisense B1 element which is embedded in the fourth exon. Two Tif transcripts were identified which shared identical sequences except that a string of 71-nt derived from the antisense B1 element was deficient in the shorter transcript. Of interests, B1-like RNA ladder was detected in xenografts. Functional studies showed that TIF induced chemotaxis and neovessel formation. Pharmacological studies suggested that TIF activated Gi-coupled CXCR2 and induced both calcium mobilization and ERK1/2 phosphorylation, and suppressed forskolin-stimulated cAMP accumulation. In addition, secreted matured TIF functioned as an autocrine factor and promoted anchorage-independent growth. Unexpectedly, TIF delayed the onset of tumor formation, possibly via suppressing proliferation of stromal fibroblasts. However, TIF did not exert any inhibitory effect on tumor growth. Potentially, TIF could be used for preventing cancer relapse.


Assuntos
Quimiocinas CXC/genética , Quimiocinas/genética , Animais , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Quimiocinas CXC/metabolismo , Quimiotaxia , Cricetulus , Humanos , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Ratos , Receptores de Interleucina-8B/metabolismo , Homologia de Sequência do Ácido Nucleico
7.
Sci Rep ; 7: 42279, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186140

RESUMO

The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gßγ-protein kinase C- and Gßγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1ß up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gß protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2-/- mice. These results suggest that Gßγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults.


Assuntos
Movimento Celular/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Actinas/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiotaxia/efeitos dos fármacos , Endocitose , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Niacina/farmacologia , Niacina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/patologia , Sepse/prevenção & controle , Regulação para Cima/efeitos dos fármacos
8.
Sci Rep ; 7: 40247, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059140

RESUMO

Serotonin (5-HT) is an important neurotransmitter and neuromodulator that controls a variety of sensory and motor functions through 5-HT receptors (5-HTRs). The 5-HT4R subfamily is linked to Gs proteins, which activate adenylyl cyclases (ACs), and is involved in many responses in peripheral organs. In this study, the 5-HT4R from Apostichopus japonicus (Aj5-HT4R) was identified and characterised. The cloned full-length Aj5-HT4R cDNA is 1,544 bp long and contains an open reading frame 1,011 bp in length encoding 336 amino acid proteins. Bioinformatics analysis of the Aj5-HT4R protein indicated this receptor was a member of class A G protein coupled receptor (GPCR) family. Further experiments using Aj5-HT4R-transfected HEK293 cells demonstrated that treatment with 5-HT triggered a significant increase in intracellular cAMP level in a dose-dependent manner and induced a rapid internalisation of Aj5-HT4R fused with enhanced green fluorescent protein (Aj5-HT4R-EGFP) from the cell surface into the cytoplasm. In addition, the transcriptional profiles of Aj5-HT4R in aestivating A. japonicas and phosphofructokinase (AjPFK) in 5-HT administrated A. japonicus have been analysed by real-time PCR assays. Results have led to a basic understanding of Aj5-HT4R in A. japonicus, and provide a foundation for further exploration of the cell signaling and regulatory functions of this receptor.


Assuntos
Receptores 5-HT4 de Serotonina/genética , Receptores 5-HT4 de Serotonina/metabolismo , Stichopus/genética , Stichopus/metabolismo , Sequência de Aminoácidos , Animais , AMP Cíclico/metabolismo , DNA Complementar/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , RNA Mensageiro/metabolismo , Receptores 5-HT4 de Serotonina/isolamento & purificação
9.
J Neurochem ; 137(2): 200-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826667

RESUMO

The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the ßγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, ß-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here, we provide evidence that upon activation by an agonist, H3Rs trigger ERK1/2 activation via phospholipase C/protein kinase C (PLC/PKC)-, phospholipase D (PLD)s-, and matrix metallopeptidase/epidermal growth factor receptor (MMP/EGFR) transactivation-dependent pathways. Moreover, we demonstrate that H3Rs exhibit a neuroprotective effect on the cultured mouse cortical neurons under hypoxia conditions through the ERK1/2 pathway.


Assuntos
Receptores ErbB/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfolipase D/metabolismo , Proteína Quinase C/metabolismo , Receptores Histamínicos H3/metabolismo , Animais , Animais Recém-Nascidos , Butadienos/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Receptores ErbB/genética , Glucose/deficiência , Histamina/farmacologia , Humanos , Hipóxia , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrilas/farmacologia , Toxina Pertussis/farmacologia , Fosfolipase D/genética , Proteína Quinase C/genética , Receptores Histamínicos H3/genética , Transdução de Sinais/fisiologia , Fatores de Tempo
10.
Mol Neurobiol ; 53(2): 1237-1246, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613019

RESUMO

Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled ß-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a ß-arrestin 2-dependent manner.


Assuntos
Espaço Intracelular/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , beta-Arrestinas/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Melatonina/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
11.
Biochem J ; 466(2): 391-400, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25422933

RESUMO

In insects, molting and metamorphosis are strictly regulated by ecdysteroids. Ecdysteroid synthesis is positively or negatively controlled by several neuropeptides. The prothoracicostatic peptide (PTSP) BmPTSP (Bombyx mori prothoracicostatic peptide), isolated from the larval brain of B. mori, has been demonstrated to inhibit ecdysteroid synthesis in the prothoracic glands (PGs) [Hua et al. (1999) J. Biol. Chem. 274, 31169-31173]. More recently, the newly recognized B. mori receptor for Drosophila melanogaster sex peptide (DmSP) has been identified as a receptor for BmPTSP. However, details on the signalling pathways and physiological functions of this receptor have remained elusive. In the present paper, we report the functional characterization of the BmPTSP receptor (BmPTSPR)/sex peptide (SP) receptor (SPR) using both mammalian and insect cells. Synthetic DmSP shows the potential to inhibit forskolin (FSK) or adipokinetic hormone (AKH)-induced cAMP-response element (CRE)-driven luciferase (Luc) activity in a manner comparable with synthetic BmPTSP1. However, DmSP displayed a much lower activity in triggering Ca²âº mobilization and internalization than did BmPTSP1. Additionally, 6-carboxy-fluorescein fluorophore (FAM)-labelled DmSP and BmPTSP3 were found to bind specifically to BmPTSPR/SPR. The binding of FAM-DmSP was displaced by unlabelled DmSP, but not by unlabelled BmPTSP1 and, vice versa, the binding of FAM-BmPTSP3 was blocked by unlabelled BmPTSP3, but not by unlabelled DmSP. Moreover, internalization assays demonstrated that BmPTSP1, but not DmSP, evoked recruitment of the Bombyx non-visual arrestin, Kurtz, to the activated BmPTSPR/SPR in the plasma membrane. This was followed by induction of internalization. This suggests that BmPTSP1 is probably an endogenous ligand specific for BmPTSPR/SPR. We therefore designate this receptor BmPTSPR. In contrast, DmSP is an allosteric agonist that is biased towards Gα(i/o)-dependent cAMP production and away from Ca²âº mobilization and arrestin recruitment.


Assuntos
Bombyx/metabolismo , Proteínas de Drosophila/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hormônios de Inseto/farmacologia , Proteínas de Insetos/agonistas , Peptídeos/farmacologia , Receptores de Neuropeptídeos/agonistas , Transdução de Sinais/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Arrestinas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Neuropeptídeos/agonistas , Neuropeptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Células Sf9 , Terminologia como Assunto
12.
PLoS One ; 9(11): e112310, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375133

RESUMO

Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gßγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.


Assuntos
Receptores ErbB/metabolismo , Niacina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética
13.
Biochemistry ; 53(42): 6667-78, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25275886

RESUMO

Tachykinins constitute one of the largest peptide families in the animal kingdom and exert their diverse actions via G protein-coupled receptors (GPCRs). In this study, the Bombyx tachykinin-related peptides (TKRPs) were identified as specific endogenous ligands for the Bombyx neuropeptide GPCR A24 (BNGR-A24) and thus designated BNGR-A24 as BmTKRPR. Using both mammalian cell line HEK293 and insect cell line Sf21, further characterization demonstrated that BmTKRPR was activated, thus resulting in intracellular accumulation of cAMP, Ca(2+) mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Moreover, quantitative reverse transcriptase polymerase chain reaction analysis and dsRNA-mediated knockdown experiments suggested a possible role for BmTKRPR in the regulation of feeding and growth. Our findings enhance the understanding of the Bombyx TKRP system in the regulation of fundamental physiological processes.


Assuntos
Bombyx/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animais , Cálcio/metabolismo , Clonagem Molecular , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Taquicininas/genética , Células Sf9 , Transdução de Sinais
14.
Curr Mol Pharmacol ; 7(1): 67-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023974

RESUMO

The CB2 cannabinoid receptor is a promising therapeutic target for the treatment of inflammatory diseases, neuropathic pain, liver diseases, cancer and cardiovascular diseases. Obtaining detailed information on the internalization and trafficking of the human CB2 receptor in response to agonist will have a significant impact on drug discovery. Visualization and quantitative detection of EGFP-tagged CB2 receptor showed that, upon WIN55,212-2 stimulation, the CB2 receptor was rapidly internalized in a dose- and time-dependent manner from the cell membrane into the cytoplasm. Pretreatment with hypertonic sucrose, MDC clathrin inhibitor, or siRNA-mediated knock-down of clathrin heavy chain led to significant inhibition of agonist-induced CB2 internalization. Using the RNA interference method, we showed that knockdown of ß-arrestin2 expression significantly impaired receptor internalisation. Further investigation demonstrated that the internalized CB2 receptors were co-localized with the early endosome probe and were recycled to the cell surface after the removal of agonist, but treatment with specific cell-permeable proteasome inhibitor MG132 a inhibited the recycling of internalized CB2 receptor, suggesting that the proteasome-mediated degradation pathway may be involved in CB2 internalization. Moreover, the single residue Ser(352) and residue cluster S(335)S(336)T(338)T(340) at the C-terminal tail are shown to be essential for receptor phosphorylation and ß-arrestin2 association. These data provide new insights into the mechanisms regulating agonist-mediated internalization and trafficking of the human CB2 receptor.


Assuntos
Arrestinas/metabolismo , Clatrina/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Arrestinas/genética , Benzoxazinas/farmacologia , Clatrina/antagonistas & inibidores , Clatrina/genética , Dinaminas/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Morfolinas/farmacologia , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , beta-Arrestina 2 , beta-Arrestinas
15.
Biochemistry ; 53(17): 2827-39, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24724723

RESUMO

The pineal gland hormone melatonin exerts its regulatory roles in a variety of physiological and pathological responses through two G protein-coupled receptors, melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which have been recognized as promising targets in the treatment of a number of human diseases and disorders. The MT1 receptor was identified nearly 20 years ago; however, the molecular mechanisms by which MT1-mediated signaling affects physiology remain to be further elucidated. In this study, using HEK293 cells stably expressing the human MT1 receptor, melatonin induced a concentration-dependent activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). The melatonin-mediated phosphorylation of ERK1/2 at later time points (≥5 min) was strongly suppressed by pretreatment with pertussis toxin, but only a slight, if any, inhibition of ERK1/2 activation at early time points (≤2 min) was detected. Further experiments demonstrated that the Gßγ subunit, phosphoinositide 3-kinase, and calcium-insensitive protein kinase C were involved in the MT1-mediated activation of ERK1/2 at later time points (≥5 min). Moreover, results derived from cAMP assays combined with a MT1 mutant indicated that the human MT1 receptor could also couple to Gs protein, stimulating intracellular cAMP formation, and that the MT1-induced activation of ERK1/2 at early time points (≤2 min) was mediated by the Gs/cAMP/PKA cascade. Our findings may provide new insights into the pharmacological effects and physiological functions modulated by the MT1-mediated activation of ERK1/2.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor MT1 de Melatonina/fisiologia , AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Melatonina/metabolismo , Fosfatidilinositol 3-Quinases , Fosforilação , Proteína Quinase C/metabolismo , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
16.
Insect Biochem Mol Biol ; 43(11): 1028-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24018109

RESUMO

The cAMP response element binding protein, CREB, is a G protein-coupled receptor (GPCR) signal-activated transcription factor implicated in the control of many biological processes. In the current study, we constructed a cAMP response element (CRE)-driven luciferase assay system for GPCR characterization in insect cells. Our results indicated that Gs-coupled Bombyx adipokinetic hormone receptor (AKHR) and corazonin receptor could effectively initiate CRE-driven luciferase transcription, but forskolin, a reagent widely used to activate adenylyl cyclase in mammalian systems, failed to induce luciferase activity in insect cells co-transfected with a CRE-driven reporter construct upon agonist treatment. Further investigation revealed that the specific protein kinase C (PKC) inhibitors exhibited stimulatory effects on CRE-driven reporter transcription, and blockage of Ca(2+) signals and inhibition of Ca(2+)-dependent calcineurin resulted in a significant decrease in the luciferase activity. Taken together, these results suggest that PKC likely acts as a negative regulator to modulate CREB activation; in contrast, Ca(2+) signals and Ca(2+)-dependent calcineurin, in addition to PKA, essentially contribute to the positive regulation of CREB activity. This study presents evidence to elucidate the underlying molecular mechanism by which CREB activation is regulated in insects.


Assuntos
Bombyx/genética , Calcineurina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Proteína Quinase C/metabolismo , Animais , Bombyx/enzimologia , Bombyx/metabolismo , Calcineurina/genética , Cálcio/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Insetos/genética , Proteína Quinase C/genética
17.
PLoS One ; 8(5): e63262, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667597

RESUMO

The major effects of cannabinoids and endocannabinoids are mediated via two G protein-coupled receptors, CB1 and CB2, elucidation of the mechanism and structural determinants of the CB2 receptor coupling with G proteins will have a significant impact on drug discovery. In the present study, we systematically investigated the role of the intracellular loops in the interaction of the CB2 receptor with G proteins using chimeric receptors alongside the characterization of cAMP accumulation and ERK1/2 phosphorylation. We provided evidence that ICL2 was significantly involved in G protein coupling in coordination with the C-terminal end. Moreover, a single alanine substitution of the Pro-139 in the CB2 receptor that corresponds to Leu-222 in the CB1 receptor resulted in a moderate impairment in the inhibition of cAMP accumulation, whereas mutants P139F, P139M and P139L were able to couple to the Gs protein in a CRE-driven luciferase assay. With the ERK activation experiments, we further found that P139L has the ability to activate ERK through both Gi- and Gs-mediated pathways. Our findings defined an essential role of the second intracellular loop of the CB2 receptor in coordination with the C-terminal tail in G protein coupling and receptor activation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Prolina/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
18.
J Biol Chem ; 288(17): 11662-75, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23457297

RESUMO

Corazonin, an undecapeptide neurohormone sharing a highly conserved amino acid sequence across Insecta, plays different physiological roles in the regulation of heart contraction rates, silk spinning rates, the induction of dark color and morphometric phase changes, and ecdysis. Corazonin receptors have been identified in Drosophila melanogaster, Manduca sexta, and Musca domestica. However, detailed information on the signaling and major physiological functions of corazonin and its receptor is largely unknown. In the current study, using both the mammalian cell line HEK293 and insect cell lines BmN and Sf21, we paired the Bombyx corazonin neuropeptide as a specific endogenous ligand for the Bombyx neuropeptide G protein-coupled receptor A21 (BNGR-A21), and we therefore designated this receptor as BmCrzR. Further characterization indicated that synthetic BmCrz demonstrated a high affinity for and activated BmCrzR, resulting in intracellular cAMP accumulation, Ca(2+) mobilization, and ERK1/2 phosphorylation via the Gq- and Gs-coupled signaling pathways. The direct interaction of BmCrzR with BmCrz was confirmed by a rhodamine-labeled BmCrz peptide. Moreover, experiments with double-stranded RNA and synthetic peptide injection suggested a possible role of BmCrz/BmCrzR in the regulation of larval growth and spinning rate. Our present results provide the first in-depth information on BmCrzR-mediated signaling for further elucidation of the BmCrz/BmCrzR system in the regulation of fundamental physiological processes.


Assuntos
Bombyx/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Insetos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bombyx/genética , Cálcio/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Proteínas de Insetos/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropeptídeos/genética , Fosforilação/fisiologia , Receptores Acoplados a Proteínas G/genética
19.
Expert Opin Drug Discov ; 7(9): 791-806, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22716301

RESUMO

INTRODUCTION: G protein-coupled receptors (GPCRs) are the largest and most versatile group of cytomembrane receptors, comprising of approximately 300 non-sensory and druggable members. Traditional GPCR drug screening is based on radiometric competition binding assays, which are expensive and hazardous to human health. Furthermore, the paradox of high investment and low output, in terms of new drugs, highlights the need for more efficient and effective drug screening methods. AREAS COVERED: This review summarizes non-radioactive assays assessing the ligand-receptor binding including: the fluorescence polarization assay, the TR-FRET assay and the surface plasmon resonance assay. It also looks at non-radioactive assays that assess receptor activation and signaling including: second messenger-based assays and ß-arrestin recruitment-based assays. This review also looks at assays based on cellular phenotypic change. EXPERT OPINION: GPCR signaling pathways look to be more complicated than previously thought. The existence of receptor allosteric sites and multireceptor downstream effectors restricts the traditional assay methods. The emergence of novel drug screening methods such as those for assessing ß-arrestin recruitment and cellular phenotypic change may provide us with improved drug screening efficiency and effect.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/metabolismo , Sítio Alostérico , Bioensaio/métodos , Descoberta de Drogas/normas , Humanos , Transdução de Sinais
20.
Anal Biochem ; 417(1): 65-72, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21726524

RESUMO

G-protein-coupled receptor (GPCR) internalization provides a G-protein-subtype-independent method for assaying agonist-stimulated activation of receptors. We have developed a novel assay that allows quantitative analysis of GPCR internalization based on the interaction between activated GPCRs and ß-arrestin2 and on Nostoc punctiforme DnaE intein-mediated reconstitution of Renilla luciferase fragments. This assay system was validated using four functionally divergent GPCRs treated with agonists and antagonists. The EC(50) values obtained for the known agonists and antagonists are in close agreement with the results of previous reports, indicating that this assay system is sensitive enough to permit quantification of GPCR internalization. This rapid and quantitative assay, therefore, could be used universally as a functional cell-based assay for GPCR high-throughput screening during drug discovery.


Assuntos
Bioensaio/métodos , DNA Polimerase III/metabolismo , Endocitose , Inteínas/genética , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Bases , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Luciferases/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Nostoc/metabolismo , Plasmídeos/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA