Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oral Microbiol ; 38(4): 275-288, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37006135

RESUMO

Porphyromonas gingivalis is a keystone pathogen in periodontitis. Our previous study indicated that periodontitis induced by P. gingivalis increased the percentage of CD19+ B cells but decreased the ratio of IL-10-producing regulatory B cells (B10) in collagen-induced arthritis (CIA) mice. It is still unclear which virulence factors of P. gingivalis are involved in these processes. Here, we compared the effects of different components of P. gingivalis on the biogenesis of B10 cells and found that the decreased proportion of B10 cells mainly resulted from the undenatured proteins other than the DNA, RNA, or lipopolysaccharides of P. gingivalis. As gingipains are enzymes and virulence factors that play a vital role in the progression in periodontitis through affecting the innate and adaptive immune system, we then compared the influence of the wild-type (WT) strain of P. gingivalis (ATCC 33277) and its isogenic gingipain-null mutant (∆K∆RAB) on the differentiation of splenic B cells into B10 cells. Interestingly, compared to WT strain, ∆K∆RAB treatment increased the frequency of B10 cells as well as the expression of IL-6 in B cells. Furthermore, the acute peritonitis, an ideal model for the quick evaluation of immune effects of agents, induced by ∆K∆RAB, showed the higher IL-6 production and proportion of B10 cells compared with WT. Finally, we performed transcriptomic analysis to better understand the effects and possible mechanisms of gingipains on B cells. Compared with WT, ∆K∆RAB upregulated the PI3K-Akt pathway of B cells, which is important for IL-10 production and B10 cell biogenesis, and more activated Jak-STAT pathway, which is a classical signaling pathway mediated by IL-6. Cumulatively, this study preliminarily revealed that gingipains of P. gingivalis are vital virulence factors downregulating B10 cells and altering immune responses.


Assuntos
Periodontite , Porphyromonas gingivalis , Animais , Camundongos , Cisteína Endopeptidases Gingipaínas/metabolismo , Fatores de Virulência/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Fosfatidilinositol 3-Quinases/metabolismo , Janus Quinases/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo
2.
Nature ; 583(7815): 286-289, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380510

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Animais , Betacoronavirus/classificação , COVID-19 , China , Quirópteros/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reservatórios de Doenças/virologia , Genômica , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Pulmão/virologia , Malásia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
3.
PLoS One ; 10(10): e0139457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431319

RESUMO

Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection.


Assuntos
Circovirus/fisiologia , Vírus da Febre Suína Clássica/fisiologia , Células Epiteliais/virologia , Rim/virologia , Interferência Viral , Replicação Viral , Animais , Apoptose , Divisão Celular , Linhagem Celular , Núcleo Celular/virologia , Coinfecção , Efeito Citopatogênico Viral , Citoplasma/virologia , Rim/citologia , Macrófagos Alveolares/virologia , Masculino , Superinfecção , Sus scrofa , Suínos , Testículo/citologia , Testículo/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA