Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 281: 119763, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186050

RESUMO

AIMS: Beclin1(BECN1) is known as an autophagy-related protein and the expression is promoted by apelin in lung adenocarcinoma cells, suggesting that apelin activates autophagy in lung adenocarcinoma. However, the functions of apelin-induced autophagy in lung adenocarcinoma tumorigenesis and deterioration are still unknown. Thus, this study aims to investigate the effects of apelin-induced autophagy on lung adenocarcinoma tumorigenesis and deterioration. MAIN METHODS: Protein expression of exogenous genes were detected by Western blotting analysis. Lung adenocarcinoma cell migration was assessed with cell migration assays. Autophagy was measured with quantification of GFP-LC3 or RFP-GFP-LC3 puncta using fluorescence microscopy in cells by an observed blinded to experimental condition and by western blot analysis of LC3 and p62 in cell lysates as well as autophagy flux. Immunofluorescence staining was performed in human lung adenocarcinoma A549 cells with p-cofilin antibody. The proteins expression in cancer specimens were examined with immunohistochemistry. KEY FINDINGS: Here, we reveal that apelin induces autophagy activation in lung adenocarcinoma. Apelin/APJ regulates BECN1 transcription via HIF1A. Apelin/APJ-activated autophagy promotes lung adenocarcinoma cell migration. Moreover, treatment with autophagy inhibitors significantly decreases apelin/APJ-induced lung adenocarcinoma cell migration. Evaluation of patient samples of lung adenocarcinoma reveals an association between APJ with BECN1 expression and a poor prognosis. SIGNIFICANCE: Our studies demonstrate that apelin-induced autophagy promotes lung adenocarcinoma cell migration which suggests a potential therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma/patologia , Receptores de Apelina/metabolismo , Apelina/metabolismo , Autofagia , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Transdução de Sinais , Células A549 , Fatores de Despolimerização de Actina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Autofagia/genética , Proteína Beclina-1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosforilação
2.
Clin Chim Acta ; 513: 6-12, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33309797

RESUMO

Iron is one of the most important elements for life, but excess iron is toxic. Intracellularly, mitochondria are the center of iron utilization requiring sufficient amounts to maintain normal physiologic function. Accordingly, disruption of iron homeostasis could seriously impact mitochondrial function leading to impaired energy state and potential disease development. In this review, we discuss mechanisms of iron metabolism including transport, processing, heme synthesis, iron-sulfur cluster biogenesis and storage. We highlight the vital role of mitochondrial iron in pathologic states including neurodegenerative disorders and sideroblastic anemia.


Assuntos
Anemia Sideroblástica , Sobrecarga de Ferro , Homeostase , Humanos , Ferro , Mitocôndrias
3.
Free Radic Biol Med ; 163: 125-134, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347985

RESUMO

Mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which the transcriptional activation programs of mitochondrial chaperone proteins and proteases are initiated to maintain proteostasis in mitochondria. Additionally, the activation of UPRmt delays aging and extends lifespan by maintaining mitochondrial proteostasis. Growing evidences suggests that UPRmt plays an important role in diverse human diseases, especially ageing-related diseases. Therefore, this review focuses on the role of UPRmt in ageing and ageing-related neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease. The activation of UPRmt and the high expression of UPRmt components contribute to longevity extension. The activation of UPRmt may ameliorate Alzheimer's disease, Parkinson's disease and Huntington's disease. Besides, UPRmt is also involved in the occurrence and development of cancers and heart diseases. UPRmt contributes to the growth, invasive and metastasis of cancers. UPRmt has paradoxical roles in heart diseases. UPRmt not only protects against heart damage, but may sometimes aggravates the development of heart diseases. Considering the pleiotropic actions of UPRmt system, targeting UPRmt pathway may be a potent therapeutic avenue for neurodegenerative diseases, cancers and heart diseases.


Assuntos
Proteínas Mitocondriais , Resposta a Proteínas não Dobradas , Envelhecimento/genética , Humanos , Longevidade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
4.
J Cell Physiol ; 234(9): 14413-14421, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30706469

RESUMO

Apelin is the endogenous ligand for the G protein-coupled receptor APJ. Both apelin and APJ receptor are distributed in vascular smooth muscle cells (VSMCs) and play important roles in the cardiovascular system. Our previous reports have indicated that apelin-13 promoted the proliferation of VSMCs, but its exact mechanism remains to be further explored. The results of the present study demonstrated that the Warburg effect plays a pivotal role in apelin-13-induced human aortic vascular smooth muscle cells (HA-VSMCs) proliferation. Apelin-13 promoted the expression of glucose transporter type 1 (GLUT1), pyruvate kinase 2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4) in a dose- and time-dependent manner. Moreover, apelin-13 increased the extracellular, intracellular lactate level, and decreased adenosine triphosphate level in HA-VSMCs. Furthermore, siRNA-PKM2 reversed extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Downregulation of LDHA also significantly prevented extracellular and intracellular lactate generation and inhibited the proliferation of HA-VSMCs induced by apelin-13. Taken together, our results demonstrated a novel mechanism for HA-VSMCs proliferation induced by apelin-13 via Warburg effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA