Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216806, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467179

RESUMO

The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD+ salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD+ salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD+ salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD+ metabolism in the treatment of PAAD.


Assuntos
Adenocarcinoma , Nicotinamida-Nucleotídeo Adenililtransferase , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ácido Láctico , NAD/metabolismo , Glucose , Camundongos Nus , Lisina , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
2.
Curr Res Food Sci ; 8: 100699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420347

RESUMO

Alcohol liver disease (ALD) is a liver disease caused by long-term heavy drinking. Glucosamine (GLC) is an amino monosaccharide that plays a very important role in the synthesis of human and animal cartilage. GLC is commonly used in the treatment of mild to moderate osteoarthritis and has good anti-inflammatory and antioxidant properties. In this study, alcoholic injury models were constructed in mice and human normal hepatocyte L02 cells to explore the protective effect and mechanism of GLC on ALD. Mice were given GLC by gavage for 30 days. Liver injury models of both mice and L02 cells were produced by ethanol. Detecting the levels of liver injury biomarkers, lipid metabolism, oxidative stress biomarkers, and inflammatory factors through different reagent kits. Exploring oxidative and inflammatory pathways in mouse liver tissue through Western blot and RT-PCR. The results showed that GLC can significantly inhibit the abnormal increase of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), triglycerides (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL-C), and can significantly improve the level of high-density lipoprotein cholesterol (HDL-C). In addition, GLC intervention significantly improved alcohol induced hepatic oxidative stress by reducing the levels of malondialdehyde (MDA) and, increasing the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the liver. Further mechanisms suggest that GLC can inhibit the expression of ethanol metabolism enzyme cytochrome P4502E1 (CYP2E1), activate the antioxidant pathway Keap1/Nrf2/HO-1, down-regulate the phosphorylation of MAPK and NF-κB signaling pathways, and thus reduce the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). Therefore, GLC may be a significant candidate functional food for attenuating alcohol induced acute liver injury.

3.
Adv Sci (Weinh) ; 11(4): e2306044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032137

RESUMO

The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.


Assuntos
Depsipeptídeos , Pró-Fármacos , Peptídeo Hidrolases , Endopeptidases , Pró-Fármacos/farmacologia
4.
Heliyon ; 9(1): e12378, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36820187

RESUMO

Pancreatic cancer (PC) is one of the most fatal malignant tumors, and is commonly diagnosed at an advanced stage with no effective therapy. Metabolism-related genes (MRGs) and immune-related genes (IRGs) play considerable roles in the tumor microenvironment. Therefore, an effective prediction model based on MRGs and IRGs could aid in the prognosis of PC. In this study, differential expression analysis was performed to gain 25 intersectional genes from 857 differentially expressed MRGs (DEMRGs), and 1353 differentially expressed IRGs, from The Cancer Genome Atlas database of PC. Cox and Lasso regression were applied and a five-DEMRGs prognostic model constructed. Survival analysis, ROC values, risk curve and validation analysis showed that the model could independently predict PC prognosis. In addition, the correlation analysis suggested that the five-DEMRGs prognostic model could reflect the status of the immune microenvironment, including Tregs, M1 macrophages and Mast cell resting. Therefore, our study provides new underlying predictive biomarkers and associated immunotherapy targets.

5.
Phytomedicine ; 107: 154428, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115171

RESUMO

BACKGROUND: 24-epibrassinolide (EBR) is a ubiquitous steroidal phytohormone with anticancer activity. Yet the cytotoxic effects and mechanism of EBR on hepatocarcinoma (HCC) cells remain elusive. METHODS: Cell counting kit-8 (CCK-8) assay was performed to evaluate cell viability. Real-time cell analysis (RTCA) technology and colony formation assays were used to evaluate cell proliferation. The apoptosis ratio was measured by flow cytometry. Seahorse XFe96 was applied to detect the effects of EBR on cellular bioenergetics. RNA-seq analysis was performed to investigate differences in gene expression profiles. Western blot and qRT-PCR were used to detect the changes in target molecules. RESULTS: EBR induced apoptosis and caused energy restriction in HCC, both of which were related to insulin-like growth factor-binding protein 1 (IGFBP1). EBR rapidly and massively induced IGBFP1, part of which was transcribed by activating transcription factor-4 (ATF4). The accumulation of secreted and cellular IGFBP1 had different important roles, in which secreted IGFBP1 affected cell energy metabolism by inhibiting the phosphorylation of Akt, while intracellular IGFBP1 acted as a pro-survival factor to resist apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) inhibitor SCH772984 and MAP/ERK kinase (MEK) inhibitor PD98059 not only attenuated the EBR-induced IGFBP1 expression but also the basal expression of IGFBP1. Thus, the treatment of cells with these inhibitors further enhances the cytotoxicity of EBR. CONCLUSION: Taken together, these findings suggested that EBR can be considered as a potential therapeutic compound for HCC due to its pro-apoptosis, restriction of energy metabolism, and other anti-cancer properties. Meanwhile, the high expression of IGFBP1 induced by EBR in HCC contributes to our understanding of the role of IGFBP1 in drug resistance.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Somatomedinas , Fatores Ativadores da Transcrição/farmacologia , Apoptose , Brassinosteroides , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular , Quinases de Proteína Quinase Ativadas por Mitógeno , Reguladores de Crescimento de Plantas/farmacologia , Somatomedinas/farmacologia , Esteroides Heterocíclicos
6.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012464

RESUMO

The global prevalence of nonalcoholic fatty liver disease (NAFLD) continues to rise, yet effective treatments are lacking due to the complex pathogenesis of this disease. Although recent research has provided evidence for the "multiple strikes" theory, the classic "two strikes" theory has not been overturned. Therefore, there is a crucial need to identify multiple targets in NAFLD pathogenesis for the development of diagnostic markers and targeted therapeutics. Since its discovery, the mechanistic target of rapamycin (mTOR) has been recognized as the central node of a network that regulates cell growth and development and is closely related to liver lipid metabolism and other processes. This paper will explore the mechanisms by which mTOR regulates lipid metabolism (SREBPs), insulin resistance (Foxo1, Lipin1), oxidative stress (PIG3, p53, JNK), intestinal microbiota (TLRs), autophagy, inflammation, genetic polymorphisms, and epigenetics in NAFLD. The specific influence of mTOR on NAFLD was hypothesized to be divided into micro regulation (the mechanism of mTOR's influence on NAFLD factors) and macro mediation (the relationship between various influencing factors) to summarize the influence of mTOR on the developmental process of NAFLD, and prove the importance of mTOR as an influencing factor of NAFLD regarding multiple aspects. The effects of crosstalk between mTOR and its upstream regulators, Notch, Hedgehog, and Hippo, on the occurrence and development of NAFLD-associated hepatocellular carcinoma are also summarized. This analysis will hopefully support the development of diagnostic markers and new therapeutic targets in NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Mar Drugs ; 20(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35621961

RESUMO

Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.


Assuntos
Quitinases , Quitosana , Animais , Quitina/química , Quitinases/metabolismo , Quitosana/química , Crustáceos/metabolismo , Oligossacarídeos/química
8.
Phytomedicine ; 102: 154164, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35597026

RESUMO

BACKGROUND: Many extracts and purified alkaloids of M. cordata (Papaveraceae family) have been reported to display promising anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis in many cancer types. However, no evidence currently exists for anti-pancreatic cancer activity of alkaloids extracted from M. cordata, including a novel alkaloid named 6­methoxy dihydrosphingosine (6-Methoxydihydroavicine, 6-ME) derived from M. cordata fruits. PURPOSE: The aim of this study was to investigate the anti-tumor effects of 6-ME on PC cells and the underlying mechanism. METHODS: CCK-8, RTCA, and colony-formation assays were used to analyze PC cell growth. Cell death ratios, changes in MMP and ROS levels were measured by flow cytometry within corresponding detection kits. A Seahorse XFe96 was employed to examine the effects of 6-ME on cellular bioenergetics. Western blot and q-RT-PCR were conducted to detect changes in target molecules. RESULTS: 6-ME effectively reduced the growth of PC cells and promoted PCD by activating RIPK1, caspases, and GSDME. Specifically, 6-ME treatment caused a disruption of OAA metabolism and increased ROS production, thereby affecting mitochondrial homeostasis and reducing aerobic glycolysis. These responses resulted in mitophagy and RIPK1-mediated cell death. CONCLUSION: 6-ME exhibited specific anti-tumor effects through interrupting OAA metabolic homeostasis to trigger ROS/RIPK1-dependent cell death and mitochondrial dysfunction, suggesting that 6-ME could be considered as a highly promising compound for PC intervention.


Assuntos
Alcaloides , Antineoplásicos , Caspases , Equol/análogos & derivados , Ácido Oxaloacético , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Proteína Serina-Treonina Quinases de Interação com Receptores , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Equol/farmacologia , Humanos , Ácido Oxaloacético/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Papaveraceae/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
9.
Cancer Cell Int ; 22(1): 143, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366902

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a severe malignant with a 5-year survival rate of approximately 9%. Oleanolic acid is a well-known natural triterpenoid which exhibits pharmacological activities. We previously synthesized a series of oleanolic acid derivatives and evaluated the tumor-suppressive activity of olean-28,13ß-lactam (B28) in prostate cancer. However, the detailed mechanism remains to be understood. METHODS: The anti-tumor activity of B28 in PAAD was confirmed by RTCA, colony formation assay and flow cytometry. GO and KEGG enrichment analyses were performed to analyze the differentially expressed genes (DEGs) obtained by RNA sequencing. The effects of B28 on cell bioenergetics were evaluated by seahorse analyzer. Lenti-virus packaged plasmids were performed to knockdown or overexpress target genes. Alteration of mitochondrial membrane potential, ROS and GSH/GSSG were measured by corresponding detection kits according to the manufacturer's protocol. RESULTS: We evaluated and confirmed the promising anti-tumor activity of B28 in vitro. RNA-seq profile indicated that multiple metabolic pathways were interrupted in B28 treated PAAD cells. Next, we demonstrated that B28 induces cellular bioenergetics crisis to inhibit PAAD cells growth and induce cell death. We further validated that cell cycle arrest, inhibition of cell growth, cell apoptosis and cell bioenergetics disruption were functionally rescued by ROS scavenger NAC. Mechanistically, we found glutamine metabolism was inhibited due to B28 administration. Moreover, we validated that down-regulation of GLS1 contributes to ROS generation and bioenergetics interruption induced by B28. Furthermore, we elucidated that YTHDF1-GLS1 axis is the potential downstream target of B28 to induce PAAD cell metabolic crisis and cell death. Finally, we also confirmed the anti-tumor activity of B28 in vivo. CONCLUSIONS: Current study demonstrates B28 disrupts YTDFH1-GLS1 axis to induce ROS-dependent cell bioenergetics crisis and cell death which finally suppress PAAD cell growth, indicating that this synthesized olean-28,13ß-lactam maybe a potent agent for PAAD intervention.

10.
Mar Drugs ; 20(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35049924

RESUMO

Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Organismos Aquáticos , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Animais , Antibacterianos/química , Antineoplásicos/química , Quitosana/química , Oligossacarídeos/química , Relação Estrutura-Atividade
11.
Front Mol Biosci ; 8: 611508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681290

RESUMO

Pancreatic adenocarcinoma (PAAD) is the 10th most common cancer worldwide and the outcomes for patients with the disease remain extremely poor. Precision biomarkers are urgently needed to increase the efficiency of early diagnosis and to improve the prognosis of patients. The tumor microenvironment (TME) and tumor immune infiltration are thought to impact the occurrence, progression, and prognosis of PAAD. Novel biomarkers excavated originating from the TME and immune infiltration may be effective in predicting the prognosis of PAAD patients. In the current study, the ESTIMATE and CIBERSORT algorithms were applied to estimate the division of immune and stromal components and the proportion of tumor-infiltrating immune cells in 182 PAAD cases downloaded from The Cancer Genome Atlas database. Intersection analyses of the Protein-Protein Interaction networks and Cox regression analysis identified the chemokine (CXC-motif) ligand 10 (CXCL10) as a predictive biomarker. We verified that CXCL10 in the TME negatively correlates with prognosis in PAAD and positively correlates with tumor cell differentiation. GSE62452 from the GEO database and cumulative survival analysis were performed to validate CXCL10 expression as an independent prognostic indicator. We also found that memory B cells, regulatory T cells, and macrophages M0 and M1 were correlated with the expression of CXCL10 indicating that expression of CXCL10 influenced the immune activity of the TME. Our data suggest that CXCL10 is beneficial as a prognostic indicator in PAAD patients and highlights the potential for immune targeted therapy in the treatment of PAAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA