Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560474

RESUMO

Solanum rostratum Dunal, belongs to the Solanaceae family and has drawn attention for its intricate interplay of invasiveness, phytochemical composition, and potential bioactivities. Notably invasive, S. rostratum employs adaptive mechanisms during senescence, featuring thorn formation on leaves, fruits, and stems seed self-propulsion, and resistance to drought. This adaptability has led to its proliferation in countries such as China, Canada, and Australia, extending beyond its Mexican origin. Despite its invasive historical reputation, recent studies unveil a rich array of phytochemicals in S. rostratum, suggesting untapped economic potential due to under-exploration. This review delves into exploring the potential uses of S. rostratum while elucidating the bioactive compounds associated with diverse identified bioactivities. In terms of phytochemistry, S. rostratum reveals an abundance of various bioactive compounds, including alkaloids, flavonoids, phenols, saponins, and glycosides. These compounds confer a range of beneficial bioactivities, encompassing antioxidant, antifungal, anticarcinogenic, anti-inflammatory, phytotoxic, and pesticidal properties. This positions S. rostratum as a reservoir of valuable chemical constituents with potential applications, particularly in medicine and agriculture. The review provides comprehensive insights into the phytochemistry, bioactivities, and bioactivity-guided fractionation of S. rostratum. In this review, we focus on the potential utilization of S. rostratum by emphasizing its phytochemical profile, which holds promise for diverse applications. This review is the first that advocates for further exploration and research to unlock the plant's full potential for both economic and environmental benefit.


Assuntos
Solanum , Animais , Solanum/química , Búfalos , Glicosídeos , Sementes , Compostos Fitoquímicos/farmacologia
2.
Chem Biodivers ; 20(8): e202300660, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37505209

RESUMO

Essential oils (EOs) are often used as natural antifungal agents to control the growth of phytopathogenic fungi. The aim of this study was to determine the effect of Ziziphora clinopodioides leaf EO against Verticillium dahliae, a pathogenic fungus of cotton. Gas chromatography-mass spectrometry (GC/MS) analysis revealed the presence of 15 compounds of the total of extracted oil, which was consisted of 98.79 % monoterpenes and 0.61 % sesquiterpenes. The major constituents were pulegone (62.17 %), isomenthone (18.42 %), l-menthone (5.55 %) and piperitenone (3.99 %). The mycelial growth of Verticillium dahliae was completely inhibited at 0.24 µL/mL air under vapor phase condition. Considerable morphological variations were also observed in the fungal sclerotia at the contact phase at 3 µL/mL. This study demonstrated for the first time that Z. clinopodioides EO can effectively inhibit the growth of V. dahliae, implying that it has the potential to be explored as an antifungal agent against Verticillium Wilt of cotton.


Assuntos
Ascomicetos , Óleos Voláteis , Verticillium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Folhas de Planta , Doenças das Plantas
3.
Front Plant Sci ; 13: 1028252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466289

RESUMO

The chemical profile of Ajania tibetica essential oil (EO) and its phytotoxic, insecticidal, and antimicrobial activities were assessed. Monoterpenes (79.05%) and sesquiterpenes (10.33%) were dominant in the EO, with camphor, (+/-)-lavandulol and eucalyptol being the major constituents, representing 55.06% of the total EO. The EO possessed potent phytotoxicity against Poa annua and Medicago sativa starting from 0.5 mg/mL, and when the concentration rose to 5 mg/mL, seed germination of both tested species was 100% suppressed. Ajania tibetica EO displayed significant pesticidal activity against Aphis gossypii with an LC50 value of 17.41 µg/mL; meanwhile, the EO also showed antimicrobial activity against Escherichia coli, Bacillus subtilis, Verticillium dahlia and Aspergillus niger using broth microdilution and disc diffusion methods. For the tested bacterial and fungal strains, the EO exhibited a repressing effect, with minimum inhibitory concentrations (MICs) ranging from 0.3125 to 1.25 mg/mL for bacteria and from 1.25 to 2.5 mg/mL for fungi, whereas the minimum microbicidal concentrations (MMCs) were 5 mg/mL for bacteria and 2.5 mg/mL for fungi. Our study is the first report on the chemical profile as well as the phytotoxicity, insecticidal and antimicrobic activity of A. tibetica EO, indicating its potential value as an alternative synthetic pesticide.

4.
Sci Total Environ ; 833: 155163, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35413342

RESUMO

Nitrogen (N) and phosphorus (P) control biogeochemical cycling in terrestrial ecosystems. However, N and P addition effects on litter decomposition, especially biological pathways in subtropical forests, remain unclear. Here, a two-year field litterbag experiment was employed in a subtropical forest in southwestern China to examine N and P addition effects on litter biological decomposition with nine treatments: low and high N- and P-only addition (LN, HN, LP, and HP), NP coaddition (LNLP, LNHP, HNLP, and HNHP), and a control (CK). The results showed that the decomposition coefficient (k) was higher in NP coaddition treatments (P < 0.05), and lower in N- and P-only addition treatments than in CK (P < 0.05). The highest k was observed with LNLP (P < 0.05). The N- and P-only addition treatments decreased the losses of litter mass, lignin, cellulose, and condensed tannins, litter microbial biomass carbon (MBC), litter cellulase, and soil pH (P < 0.05). The NP coaddition treatments increased the losses of litter mass, lignin, and cellulose, MBC concentration, litter invertase, urease, cellulase, and catalase activities, soil arthropod diversity (S) in litterbags, and soil pH (P < 0.05). Litter acid phosphatase activity and N:P ratio were lower in N-only addition treatments but higher in P-only addition and NP coaddition treatments than in CK (P < 0.05). Structural equation model showed that litter MBC, S, cellulase, acid phosphatase, and polyphenol oxidase contributed to the loss of litter mass (P < 0.05). The litter N:P ratio was negatively logarithmically correlated with mass loss (P < 0.01). In conclusion, the negative effect of N addition on litter decomposition was reversed when P was added by increasing decomposed litter soil arthropod diversity, MBC concentration, and invertase and cellulase activities. Finally, the results highlighted the important role of the N:P ratio in litter decomposition.


Assuntos
Celulases , Nitrogênio , Fosfatase Ácida/metabolismo , Carbono/análise , Celulases/análise , Celulases/metabolismo , China , Ecossistema , Florestas , Lignina/metabolismo , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/química , Solo/química , beta-Frutofuranosidase/análise , beta-Frutofuranosidase/metabolismo
5.
Nat Prod Res ; 36(9): 2434-2439, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33183086

RESUMO

The chemical profile and phytotoxic activity of the essential oil extracted from Artemisia sieversiana was investigated. In total 17 compounds were identified by GC/MS, representing 99.17% of the entire oil, among which α-thujone (64.46%) and eucalyptol (10.15%) were the most abundant constituents. The major components, their mixture as well as the essential oil exhibited significant phytotoxic activity against Amaranthus retroflexus, Medicago sativa, Poa annua and Pennisetum alopecuroides, with their IC50 values ranged from 1.55 ∼ 6.21 mg/mL (α-thujone), 1.42 ∼ 17.81 mg/mL (eucalyptol), 0.23 ∼ 1.05 mg/mL (the mixture), and 1.89 ∼ 4.69 mg/mL (the essential oil) on the four tested species. The mixture of the major constituents exerted more potent effect compared with each individual compound, indicating the possible involvement of synergistic effect of these two compounds.


Assuntos
Amaranthus , Artemisia , Óleos Voláteis , Poa , Artemisia/química , Eucaliptol/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
6.
Ecotoxicol Environ Saf ; 226: 112856, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619470

RESUMO

The chemical profile and the phytotoxicity of Artemisia absinthium essential oil (EO) were investigated to evaluate its potential value as a biopesticide for food safety purposes. A total of 54 compounds were identified in A. absinthium EO, with the most abundant constituents being eucalyptol (25.59%), linalool (11.99%), and ß-myrcene (10.05%). The EO, linalool, and a mixture of three major components exhibited potent suppressive activity against four receiver species; however, eucalyptol and ß-myrcene showed a much weaker effect. Bioassay-guided fractionation led to the isolation of linalool as the major active compound responsible for the EO's phytotoxicity. Subsequent scanning electron microscopy (SEM) analysis revealed that linalool significantly inhibited root-hair formation and metaxylem development. This is the first report on the determination of linalool as the major active phytotoxic compound in A. absinthium EO, as well as the elucidation of its mechanism of phytotoxicity from the perspective of root structure changes in the receiver species. Our results suggest that both the EO and its major constituents have potential value as environmentally friendly herbicides.


Assuntos
Artemisia absinthium , Herbicidas , Óleos Voláteis , Herbicidas/toxicidade , Óleos Voláteis/toxicidade
7.
Front Plant Sci ; 12: 689875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211492

RESUMO

The chemical profile of Thymus proximus essential oil (EO) and its allelopathic, phytotoxic, and insecticidal activity was evaluated. Carvacrol, p-cymene, and γ-terpinene were detected as the major components of the EO, representing 85.9% of the total oil. About 50 g fresh plant material of T. proximus in a 1.5-L air tight container completely inhibited the seed germination of Amaranthus retroflexus and Poa anuua. Meanwhile, the EO exhibited potent phytotoxic activity, which resulted in 100% germination failure of both the test species when 2 mg/ml (for A. retroflexus) and 5 mg/ml (for Poa annua) oil was applied. The EO also triggered a significant insecticidal activity on Aphis gossypii with a LC50 value of 6.34 ppm. Carvacrol was identified as the main active compound responsible for both the plant suppressing effect and the insecticidal activity of the EO. Our study is the first on the allelopathic, phytotoxic, and insecticidal activity of T. proximus EO, and the determination of the responsible compound, which indicated their potential of being further explored as environment friendly biopesticides.

8.
Ecotoxicol Environ Saf ; 211: 111879, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465625

RESUMO

Essential oils have been evaluated as appropriate phytotoxins with mechanisms of action that are different from those of synthetic herbicides applied in weed management activities, but little is known about the effect of Ambrosia artemisiifolia essential oil (EO) on weeds. Here, the chemical composition of A. artemisiifolia EO was analyzed using a Gas Chromatography-Mass Spectrometry system. and the phytotoxic activities of the EO against monocot (Poa annua, Setaria viridis) and dicot (Amaranthus retroflexus, Medicago sativa) species are evaluated under laboratory and green-house conditions for the first time. The EO was rich in sesquiterpenes (62.51%), with germacrene D (32.92%), ß-pinene (15.14%), limonene (9.90%), and caryophyllene (4.49%) being the major compounds based on Gas Chromatography-Mass Spectrometry analysis results. A. artemisiifolia EO inhibited seed germination and seedling development significantly in the tested species even at low concentrations (0.25 mg mL-1). In addition, bioassay results for the activities of superoxide dismutase (SOD) and peroxidase (POD) increased and then decreased with an increase in EO concentration. Unlike the enzymatic activity, root cell viability declined significantly in the tested weeds in all EO treatments. Besides, a foliar spray experiment resulted in visible injury in leaves and a decrease in chlorophyll content and eventually led to wilting of all tested weeds. The EO (0.25-5.00 mg mL-1) altered Allium cepa root tip cells with a decline in mitotic index and an increase in chromosomal aberrations after 24 h treatment. The cytotoxic evaluation confirmed the mitotic inhibitory effect of EO, although the intensity varied under different concentrations. According to the results, A. artemisiifolia EO has the potential applications as a natural herbicide owing to its phytotoxic activity; which also helps to explain their potential involvement in allelopathic interaction of volatile compounds present in the EO that facilitate the invasion success of the exotic species.


Assuntos
Ambrosia/química , Herbicidas/toxicidade , Óleos Voláteis/toxicidade , Plantas Daninhas/química , Alelopatia/efeitos dos fármacos , Amaranthus/efeitos dos fármacos , Monoterpenos Bicíclicos , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/química , Limoneno , Sesquiterpenos de Germacrano
9.
Chem Biodivers ; 18(2): e2000897, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410569

RESUMO

The chemical profile and phytotoxic action of Hibiscus trionum essential oil (EO) was studied. In total 17 compounds were identified via GC/MS, representing 94.18 % of the entire oil, with phytol (40.37 %) being the dominant constituent. Bioassay revealed that the EO inhibited root elongation of Medicago sativa and Amaranthus retroflexus by 32.66 % and 61.86 % at 5 mg/mL, respectively; meanwhile, the major component phytol also exhibited significant phytotoxic activity, suppressing radical elongation of Pennisetum alopecuroides, M. sativa and A. retroflexus by 26.08 %, 27.55 % and 43.96 % at 1 mg/mL, respectively. The fact that the EO showed weaker activity than phytol implied that some constituents might trigger antagonistic action to decrease the oil's activity. Our study is the first on the chemical profile and phytotoxic effect of H. trionum EO.


Assuntos
Hibiscus/química , Óleos Voláteis/química , Fitol/química , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Hibiscus/toxicidade , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Óleos Voláteis/toxicidade , Fitol/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Testes de Toxicidade
10.
Sci Rep ; 10(1): 13568, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782298

RESUMO

The potential of utilizing Onopordum acanthium essential oil and its major constituents as environment friendly herbicides was investigated. In total 29, 25, and 18 compounds were identified from flower, leaf, and stem oils, representing 94.77%, 80.02%, and 90.74% of the total oil, respectively. Flower and stem oils were found to be rich in n-alkanes, which accounted for 57.33% in flower oil, and 82.33% in stem oil. Flower oil exerted potent inhibitory activity on both receiver species, Amaranthus retroflexus and Poa annua, which nearly completely suppressed seed germination at 5 mg/mL, and ß-eudesmol is the most likely responsible compound for its phytotoxicity; in comparison, leaf and stem oils exhibited much weaker inhibitory activity on A. retroflexus, and stimulatory effect on P. annua when tested concentration was below 2.5 mg/mL. Alkanes in the oils were found to exert relatively weak plant growth regulatory activity. This report is the first on the chemical profile and phytotoxic action of O. acanthium oil as well as the phytotoxicity of ß-eudesmol.

12.
Chem Biodivers ; 16(4): e1800595, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614178

RESUMO

The chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana Ledeb. (Amaranthaceae) essential oil were investigated. Nineteen compounds were identified via GC/MS, representing 82.3 % of the total oil, and the most abundant constituents were dibutyl phthalate (21.79 %), eucalyptol (20.14 %) and myrtenyl acetate (15.56 %). The results showed that volatile organic compounds (VOCs) released by A. cana significantly inhibited seedling growth of Amaranthus retroflexus L. and Poa annua L., and 80 g of fresh stems and leaves of A. cana in a 1.5 L airtight container almost completely suppressed the seed germination of both plants. Meanwhile, 5 µg/mL essential oil completely inhibited the seed germination of A. retroflexus, Medicago sativa L., P. annua and Echinochloa crusgalli L. Pesticidal testing revealed that the essential oil had strong behavioral avoidance and lethal effects on Aphis pomi DeGeer. Five microliters of essential oil/Petri dish treatment resulted in an 84.5 % mortality rate after 12 h, and the mortality rate reached nearly 100 % after 48 h. This report is the first one on the chemical composition as well as the biological activity of the essential oil of A. cana, and our results indicate that the oil is valuable in terms of being further exploited as a bioherbicide/insecticide.


Assuntos
Amaranthaceae/química , Amaranthus/efeitos dos fármacos , Afídeos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Praguicidas/farmacologia , Compostos Fitoquímicos/farmacologia , Poa/efeitos dos fármacos , Alelopatia , Amaranthus/crescimento & desenvolvimento , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Praguicidas/química , Praguicidas/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Folhas de Planta/química , Poa/crescimento & desenvolvimento , Relação Estrutura-Atividade
13.
Chem Biodivers ; 15(11): e1800348, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30168654

RESUMO

To evaluate the potential value of Seriphidium terrae-albae (Krasch.) Poljakov essential oil as bioherbicide, its chemical composition as well as phytotoxic activity was investigated. Seventeen compounds were identified via GC/MS, representing 98.1 % of the total oil, and the most abundant constituents were α-thujone (43.18 %), ß-thujone (16.92 %), eucalyptol (17.55 %), and camphor (13.88 %). Phytotoxic assay revealed that the essential oil as well as its major constituents exhibited inhibitory activity on root and shoot growth of receiver plants in a dose-dependent manner. When the concentration reached 20 µg/mL, root length of Amaranthus retroflexus was reduced to 31.3 %, 70.6 %, 36.9 %, and 66.6 % of the control, respectively, when treated with α-thujone, eucalyptol, camphor, and the mixture of these compounds; meanwhile, root length of Poa annua was 3.0 %, 24.2 %, 0 %, and 4.4 % of the control when the same chemicals were applied. On the other hand, the essential oil showed a much stronger activity. At 1.5 µL/mL, root and shoot length of A. retroflexus and P. annua were reduced to 0.65 %, 0.5 %, and 1.53 %, 1.51 % of the control, respectively, and seed germination of A. retroflexus and P. annua was completely inhibited when the oil concentration reached 3 µg/mL and 5 µg/mL, respectively. This is the first report on the chemical composition of the essential oil of S. terrae-albae, and our results indicated that it has the potential to be further exploited as a bioherbicide.


Assuntos
Amaranthus/efeitos dos fármacos , Herbicidas/farmacologia , Monoterpenos/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Poa/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Monoterpenos Bicíclicos , Relação Dose-Resposta a Droga , Herbicidas/química , Herbicidas/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poa/crescimento & desenvolvimento , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA