Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Immunol ; 247: 109234, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36649749

RESUMO

Obesity is a complicated metabolic disease characterized by meta-inflammation in adipose tissues. In this study, we explored the roles of a new long non-coding RNA (lncRNA), HEM2ATM, which is highly expressed in adipose tissue M2 macrophages, in modulating obesity-associated meta-inflammation and insulin resistance. HEM2ATM expression decreased significantly in adipose tissue macrophages (ATMs) obtained from epididymal adipose tissues of high-fat diet (HFD)-induced obese mice. Overexpression of macrophage HEM2ATM improved meta-inflammation and insulin resistance in the adipose tissues of HFD-fed mice. Functionally, HEM2ATM negatively regulated the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in macrophages. Mechanistically, HEM2ATM bound to heterogeneous nuclear ribonucleoprotein U (hnRNP U), suppressed hnRNP U translocation from the nucleus to the cytoplasm, hindered the function of cytoplasmic hnRNP U on TNF-α and IL-6 mRNA stabilization, and decreased the secretion of TNF-α and IL-6. Collectively, HEM2ATM is a novel suppressor of obesity-associated meta-inflammation and insulin resistance.


Assuntos
Resistência à Insulina , RNA Longo não Codificante , Camundongos , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistência à Insulina/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo , Inflamação/metabolismo , Obesidade/genética , Obesidade/complicações , Camundongos Endogâmicos C57BL
2.
Front Endocrinol (Lausanne) ; 13: 986419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237191

RESUMO

Background: To investigate the dynamic changes of urine N6-methyladenosine (m6A) levels in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) and evaluate the clinical significance. Methods: First, the levels of urine m6A were examined and compared among 62 patients with T2DM, 70 patients with DN, and 52 age- and gender-matched normal glucose tolerant subjects (NGT) by using a MethyIFIashTM Urine m6A Quantification Kit. Subsequently, we compared the concentrations of urine m6A between different stages of DN. Moreover, statistical analysis was performed to evaluate the association of urine m6A with DN. Results: The levels of m6A were significantly decreased in patients with DN [(16.10 ± 6.48) ng/ml], compared with NGT [(23.12 ± 7.52) ng/ml, P < 0.0001] and patients with T2DM [(20.39 ± 7.16) ng/ml, P < 0.0001]. Moreover, the concentrations of urine m6A were obviously reduced with the deterioration of DN. Pearson rank correlation and regression analyses revealed that m6A was significantly associated with DN (P < 0.05). The areas under the receiver operator characteristics curve (AUC) were 0.783 (95% CI, 0.699 - 0.867, P < 0.0001) for the DN and NGT groups, and 0.737 (95% CI, 0.639 - 0.835, P < 0.0001) for the macroalbuminuria and normoalbuminuria groups, and the optimal cutoff value for m6A to distinguish the DN from NGT and the macroalbuminuria from normoalbuminuria cases was 0.4687 (diagnostic sensitivity, 71%; diagnostic specificity, 76%) and 0.4494 (diagnostic sensitivity, 79%; diagnostic specificity, 66%), respectively. Conclusions: The levels of urine m6A are significantly decreased in patients with DN and change with the deterioration of DN, which could serve as a prospective biomarker for the diagnosis of DN.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Adenosina/análogos & derivados , Biomarcadores/urina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Glucose , Humanos
3.
Front Endocrinol (Lausanne) ; 13: 910868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872977

RESUMO

Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the plasma of patients with type 2 diabetes mellitus. Islet ß-cell function was recently shown to be regulated by N6-methyladenosine (m6A), an RNA modification consisting of methylation at the N6 position of adenosine. However, the role of m6A methylation modification in methylglyoxal-induced impairment of insulin secretion in pancreatic ß cells has not been clarified. In this study, we showed that treatment of two ß-cell lines, NIT-1 and ß-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3 (METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3 significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-induced decreases in m6A RNA levels and METTL3 expression were not altered by knockdown of the receptor for the advanced glycation end product but were further decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3 overexpression. The current study demonstrated that METTL3 ameliorates MG-induced impairment of insulin secretion in pancreatic ß cells by regulating MafA.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Células Secretoras de Insulina , Fatores de Transcrição Maf Maior , Metiltransferases , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Aldeído Pirúvico/efeitos adversos , RNA Mensageiro/genética
4.
Front Physiol ; 9: 548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872401

RESUMO

Background: Because the pathogenesis of high altitude polycythemia (HAPC) is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause. Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR), ferritin, and hepcidin as well as erythropoietin (EPO) and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed. Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL)-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression. Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.

5.
Front Physiol ; 9: 1950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687133

RESUMO

Background: Hypoxia appears in a number of extreme environments, including high altitudes, the deep sea, and during aviation, and occurs in cancer, cardiovascular disease, respiratory failures and neurological disorders. Though it is well recognized that hypoxic preconditioning (HPC) exerts endogenous neuroprotective effect against severe hypoxia, the mediators and underlying molecular mechanism for the protective effect are still not fully understood. This study established a hippocampus metabolomics approach to explore the alterations associated with HPC. Methods: In this study, an animal model of HPC was established by exposing the adult BALB/c mice to acute repetitive hypoxia four times. Ultra-high liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) in combination with univariate and multivariate statistical analyses was employed to deciphering metabolic changes associated with HPC in hippocampus tissue. MetaboAnalyst 3.0 was used to construct HPC related metabolic pathways. Results: The significant metabolic differences in hippocampus between the HPC groups and control were observed, indicating that HPC mouse model was successfully established and HPC could caused significant metabolic changes. Several key metabolic pathways were found to be acutely perturbed, including phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, phenylalanine metabolism, glutathione metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism, tryptophan metabolism, purine metabolism, citrate cycle, and glycerophospholipid metabolism. Conclusion: The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the neuroprotective mechanism of HPC.

6.
Exp Hematol ; 42(9): 804-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769210

RESUMO

The mechanism of accelerated erythropoiesis under the hypoxic conditions of high altitude (HA) remains largely obscure. Here, we investigated the potential role of bone marrow (BM) T cells in the increased production of erythrocytes at HA. We found that mice exposed to a simulated altitude of 6,000 m for 1-3 weeks exhibited a significant expansion of BM CD4+ cells, mainly caused by increasing T helper 2 (Th2) cells. Using a coculture model of BM T cells and hematopoietic stem/progenitor cells, we observed that BM CD4+ cells from hypoxic mice induced erythroid output more easily, in agreement with the erythroid-enhancing effect observed for Th2-condition-cultured BM CD4+ cells. It was further demonstrated that elevated secretion of activin A and interleukin-9 by BM Th2 cells of hypoxic mice promoted erythroid differentiation of hematopoietic stem/progenitor cells and the growth of erythroblasts, respectively. Our study also provided evidence that the CXCL12-CXCR4 interaction played an important role in Th2 cell trafficking to the BM under HA conditions. These results collectively suggest that Th2 cells migrating to the BM during HA exposure have a regulatory role in erythropoiesis, which provides new insight into the mechanism of high altitude polycythemia.


Assuntos
Ativinas/metabolismo , Medula Óssea/metabolismo , Movimento Celular , Eritropoese , Hipóxia/metabolismo , Interleucina-9/metabolismo , Policitemia/metabolismo , Células Th2/metabolismo , Altitude , Doença da Altitude/metabolismo , Doença da Altitude/patologia , Animais , Medula Óssea/patologia , Quimiocina CXCL12/metabolismo , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Policitemia/patologia , Receptores CXCR4/metabolismo , Células Th2/patologia
7.
Toxicon ; 55(2-3): 390-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19744505

RESUMO

Patulin (PAT) is a mycotoxin produced by certain species of Penicillium and Aspergillus. The aim of this study was to assess PAT-induced DNA damage and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. PAT caused significant increase of DNA migration in single cell gel electrophoresis assay. To elucidate the role of glutathione (GSH), the intracellular GSH level was modulated by pre-treatment with buthionine-(S, R)-sulfoximine, a specific GSH synthesis inhibitor. It was observed that PAT significantly induced DNA damage in GSH-depleted HepG2 cells at lower concentrations. PAT induced the increased levels of reactive oxygen species and depletion of GSH in HepG2 cells using 2,7-dichlorofluorescein diacetate and 0-phthalaldehyde, respectively. PAT significantly increased the levels of 8-hydroxydeoxyguanosine and thiobarbituric acid-reactive substances in HepG2 cells. Also, PAT-induced p53 protein accumulation was observed in HepG2 cells, suggesting that the activation of p53 appeared to have been a downstream response to the PAT-induced DNA damage. These results demonstrate that PAT causes DNA strand breaks in HepG2 cells, probably through oxidative stress. Both GSH, as a main intracellular antioxidant, and p53 protein are responsible for cellular defense against PAT-induced DNA damage.


Assuntos
Dano ao DNA , Genes p53/efeitos dos fármacos , Mutagênicos/toxicidade , Patulina/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Western Blotting , Linhagem Celular Tumoral , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Fluoresceínas , Corantes Fluorescentes , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Glutationa/fisiologia , Humanos , Técnicas Imunoenzimáticas , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Toxicon ; 53(5): 584-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19673104

RESUMO

Patulin (PAT), a mycotoxin produced by certain species of Penicillium, Aspergillus and Byssochlamys, is mainly found in ripe apple and apple products. In our present study, a significant increase of the micronuclei frequency induced by PAT was found in human hepatoma HepG2 cells. To elucidate the role of glutathione (GSH) in the effect, the intracellular GSH level was modulated by pre-treatment with buthionine-(S, R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and by pre-treatment with N-acetylcysteine (NAC), a GSH precursor. It was found that depletion of GSH in HepG2 cells with BSO dramatically increased the PAT-induced micronuclei frequencies and that when the intracellular GSH content was elevated by NAC, the chromosome damage induced by PAT was significantly prevented in our test concentrations (0.19-0.75 microM). These results indicate that GSH play an important role in cellular defense against PAT-induced genotoxicity.


Assuntos
Dano ao DNA , Glutationa/metabolismo , Patulina/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glutationa/fisiologia , Glutationa Sintase/antagonistas & inibidores , Humanos , Micronúcleos com Defeito Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA