Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(3): e1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501547

RESUMO

BACKGROUND: Pyroptosis and polarization are significant contributors to the onset and development of many diseases. At present, the relationship between pyroptosis and polarization in acute lung injury (ALI) caused by sepsis remains unclear. METHODS: The ALI model for sepsis was created in mice and categorized into the blank control, lipopolysaccharide (LPS) group, LPS + low-dose Belnacasan group, LPS + high-dose Belnacasan group, LPS + low-dose Wedelolactone group, LPS + high-dose Wedelolactone group, and positive control group. The wet-dry specific gravity was evaluated to compare pulmonary edema. Hematoxylin-eosin, Masson, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining techniques were conducted to observe and contrast the pathological changes in lung tissue. ELISA was utilized to identify M1 and M2 macrophages and correlated inflammatory factors. Immunohistochemical staining and flow cytometry were employed to identify markers of M1 and M2 macrophages in lung tissue. Propidium iodide staining, together with flow cytometry, was utilized to observe the degree and positive rate of pyroptosis of alveolar macrophages. Western blot analysis was conducted to detect the expression levels of Caspase 1, Caspase 11, GSDMD, and IL-18 in the lung tissues of each group. The real-time quantitative polymerase chain reaction method was used to ascertain relative expression levels of NLRP3, Caspase 1, Caspase 11, GSDMD, IL-18, iNOS, and Arg-1 in lung tissues of all groups. RESULTS: In mice with sepsis-induced ALI, both classical and nonclassical pathways of pyroptosis are observed. Inhibiting pyroptosis has been found to ameliorate lung injury, pulmonary edema, and inflammation induced by LPS. Notably, the expression of NLRP3, Caspase 1, Caspase 11, GSDMD, IL-1ß, IL-18, TGF-ß, CD86, CD206, iNOS, and Arg-1 were all altered in this process. Additionally, alveolar macrophages were polarized along with pyroptosis in mice with ALI caused by sepsis. CONCLUSION: Pyroptosis of alveolar macrophages in the context of ALI in mice infected with sepsis has been linked to the polarization of alveolar macrophages toward type M1.


Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Caspase 1 , Macrófagos , Caspases
2.
Sci Total Environ ; 810: 152189, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890649

RESUMO

It is challenging to reduce the cadmium (Cd) and arsenic (As) contents of brown rice simultaneously due to their converse chemical behaviors in the paddy soil. Clay minerals, such as sepiolite (SEP), have significant advantages in remediating Cd-contaminated soil. Moreover, iron or manganese oxide loaded SEP can improve the As adsorption efficiency. Herein, ferric nitrate modified sepiolite (NIMS) and iron­manganese modified sepiolite (FMS) were prepared to study their effects on Cd and As accumulation in rice using pot experiments. The results showed that NIMS and FMS had a larger specific surface area than SEP. The application of SEP only decreased Cd content (by 45%), while NIMS and FMS treatments reduced both Cd (by 57% and 87%) and As (by 30% and 25%) contents in brown rice compared with the control. The X-ray photoelectron spectroscopy (XPS) analysis results indicated that MnO2 and MnOOH⁎ in FMS enhanced the adsorption and co-precipitation of Cd as well as the oxidation of As(III) to As(V). The NIMS, as well as the FMS application, increased soil pH, decreased the exchangeable Cd and non-specifically and specifically adsorbed As fractions in soil, and reduced the level of Cd in the pore water. Moreover, NIMS and FMS addition limited the transfer of As from the soil to the roots by enhancing its sequestration in the iron plaque. On the other hand, FMS treatment significantly promoted the uptake of Mn by rice (P < 0.05). The results suggested that both NIMS and FMS were promising materials for simultaneous reduction of Cd and As accumulation in rice. Notably, FMS had better performance in reducing the Cd content in rice than that of NIMS.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Ferro , Silicatos de Magnésio , Manganês , Compostos de Manganês , Óxidos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA