Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioengineering (Basel) ; 11(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38671802

RESUMO

Nanobodies have emerged as promising tools in biomedicine due to their single-chain structure and inherent stability. They generally have convex paratopes, which potentially prefer different epitope sites in an antigen compared to traditional antibodies. In this study, a synthetic phage display nanobody library was constructed and used to identify nanobodies targeting a tumor-associated antigen, the human B7-H3 protein. Combining next-generation sequencing and single-clone validation, two nanobodies were identified to specifically bind B7-H3 with medium nanomolar affinities. Further characterization revealed that these two clones targeted a different epitope compared to known B7-H3-specific antibodies, which have been explored in clinical trials. Furthermore, one of the clones, dubbed as A6, exhibited potent antibody-dependent cell-mediated cytotoxicity (ADCC) against a colorectal cancer cell line with an EC50 of 0.67 nM, upon conversion to an Fc-enhanced IgG format. These findings underscore a cost-effective strategy that bypasses the lengthy immunization process, offering potential rapid access to nanobodies targeting unexplored antigenic sites.

2.
Chemosphere ; 354: 141732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499072

RESUMO

Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.


Assuntos
Erigeron , Anaerobiose , Água , Bactérias , Archaea , Suplementos Nutricionais , Metano , Reatores Biológicos , Esgotos/química
3.
Signal Transduct Target Ther ; 9(1): 53, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433280

RESUMO

NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-ß, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Humanos , Imunoterapia , NF-kappa B/genética , Transdução de Sinais/genética
4.
Artif Intell Med ; 148: 102756, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38325933

RESUMO

Segmenting overlapping cytoplasms in cervical smear images is a clinically essential task for quantitatively measuring cell-level features to screen cervical cancer This task, however, remains rather challenging, mainly due to the deficiency of intensity (or color) information in the overlapping region Although shape prior-based models that compensate intensity deficiency by introducing prior shape information about cytoplasm are firmly established, they often yield visually implausible results, as they model shape priors only by limited shape hypotheses about cytoplasm, exploit cytoplasm-level shape priors alone, and impose no shape constraint on the resulting shape of the cytoplasm In this paper, we present an effective shape prior-based approach, called constrained multi-shape evolution, that segments all overlapping cytoplasms in the clump simultaneously by jointly evolving each cytoplasm's shape guided by the modeled shape priors We model local shape priors (cytoplasm-level) by an infinitely large shape hypothesis set which contains all possible shapes of the cytoplasm In the shape evolution, we compensate intensity deficiency for the segmentation by introducing not only the modeled local shape priors but also global shape priors (clump-level) modeled by considering mutual shape constraints of cytoplasms in the clump We also constrain the resulting shape in each evolution to be in the built shape hypothesis set for further reducing implausible segmentation results We evaluated the proposed method in two typical cervical smear datasets, and the extensive experimental results confirm its effectiveness.


Assuntos
Algoritmos , Teste de Papanicolaou , Neoplasias do Colo do Útero , Feminino , Humanos , Citoplasma/patologia , Detecção Precoce de Câncer , Teste de Papanicolaou/métodos , Neoplasias do Colo do Útero/diagnóstico
5.
Cancer Discov ; 13(7): 1556-1571, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068173

RESUMO

Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured ∼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies. SIGNIFICANCE: In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4, and CDKN2A as independent determinants of poor clinical outcomes with KRASG12Ci monotherapy in advanced NSCLC, and we propose a framework for patient stratification and treatment personalization based on the comutational status of individual tumors. See related commentary by Heng et al., p. 1513. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética
6.
Biomacromolecules ; 24(5): 2184-2195, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37073825

RESUMO

Stem cell therapy is developing rapidly, but existing expansion techniques are insufficient for the use of a large number of cells. The surface chemistry and surface morphology characteristics of materials play a critical role in cellular behaviors and functions and have guiding significance for the design of biomaterials. Many studies have proven that these factors are essential to affect cell adhesion and growth. How to design a suitable biomaterial interface is the focus of recent studies. Here, the mechanosensing of human adipose-derived stem cells (hASC) on a set of materials and materials with various porosity is systematically studied. Guided by the mechanism discoveries, three-dimensional (3D) microparticles with optimized hydrophilicity and morphology are designed via liquid-liquid phase separation technology. The microparticles support scalable stem cell culture and extracellular matrix (ECM) collection, exhibiting great potential for stem cell applications.


Assuntos
Células-Tronco Mesenquimais , Humanos , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Matriz Extracelular/metabolismo , Diferenciação Celular
7.
J Mater Chem B ; 11(9): 1978-1986, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752153

RESUMO

Since procalcitonin (PCT) is a specific inflammation indicator of severe bacterial inflammation and fungal infection, it is of great significance to construct a sensitive and rapid microfluidic chip to detect PCT in clinical application. The design of micromixers using a lab-on-a-chip (LOC) device is the premise to realizing the adequate mixing of analytical samples and reagents and is an important measure to improve the accuracy and efficiency of determination. In this research study, we investigate the mixing characteristics of hyperbolic micromixers and explore the effects of different hyperbolic curvatures, different Reynolds numbers (Re) and different channel widths on the mixing performance of the micromixers. Then, an optimal micromixer was integrated into a microfluidic chip to fabricate a desirable hyperbolic microfluidic chip (DHMC) for the sensitive determination of inflammation marker PCT with a limit of detection (LOD) as low as 0.17 ng mL-1via a chemiluminescence signal, which can be used as a promising real-time platform for early clinical diagnosis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Pró-Calcitonina , Luminescência , Inflamação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38751463

RESUMO

Background and Objective: In recent years, the field of breast cancer diagnosis and therapy has witnessed rapid technological advances. Concurrently, the emergence of molecular biology and novel detection methodologies has facilitated the transition of breast cancer management into the precision medicine era. The primary objective of this review is to discuss the transformation in the research and development paradigm for breast cancer therapies and strategies. Methods: We systematically searched PubMed, EMBASE and Cochrane databases for relevant studies published over the past 20 years using keywords including "breast cancer", "clinical trial", "seamless", "master protocol", "umbrella", "basket", "platform", and "precision medicine". Articles were screened for eligibility and key data extracted. The search was limited to English-language publications. Key Content and Findings: The review identifies three core innovations in breast cancer trial methodology: (I) in terms of research speed, the traditional three-stage drug development models are being substituted by "seamless designs" as exemplified by the immunotherapy combination study NCT0328056. (II) Addressing research breadth, "master protocols" such as basket trials (IMMU-132-01), umbrella trials (FUTURE), and platform trials (I-SPY 2) have been introduced, allowing the simultaneous assessment of multiple treatments or disease subtypes within a singular framework. (III) Pertaining to research precision, newer designs utilize biomarkers such as "enrichment" (seen in EMBRACA and OlympiA trials) and "marker stratification" (as in the SOLAR-1 trial), enabling the identification of appropriate patient subgroups and the provision of tailored therapy strategies, a stark contrast to traditional histopathology-based evaluations. Conclusions: Clinical trial design in breast cancer research has been revolutionized, moving towards more efficient and targeted strategies. Despite the presence of ethical, logistical, and data complexities, it is anticipated that ongoing technological and regulatory enhancements will pave the way for even more refined research approaches, subsequently influencing future research, clinical practices, and policymaking in breast cancer care.

9.
Am J Transl Res ; 14(11): 8146-8155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505295

RESUMO

OBJECTIVES: This study was designed to explore MicroRNAs (miRNAs) associated with the prognosis of cell carcinoma and endocervical adenocarcinoma (CESC) to search for biomarkers of CESC and provide guidelines for the clinical treatment. METHODS: mRNAs of CESC patients were downloaded from The Cancer Genome Atlas (TCGA), and miRNA expression and clinical data of the patients were preprocessed. Key miRNAs associated with the prognosis of cervical cancer were identified by weighted gene co-expression network (WGCNA). The corresponding target genes were intersected with differentially expressed genes (DEGs) acquired from variation analysis, and the pathways and functional enrichment of genes were analyzed. Key genes were screened by Kaplan-Meier (K-M) survival analysis. Risk models were constructed using Cox proportional hazard regression model and the Least Absolute Shrinkage and Selection Operator (LASSO) method, and the predictive value of the models was evaluated by time-associated receiver operating characteristic (ROC) curves. Finally, independent prognostic factors were identified by COX analysis. RESULTS: The hsa-miR-3150b-3p associated with the prognosis of CESC was identified by WGCNA. A total of 136 target genes were differentially expressed in CESC tissue and were associated with biological processes such as phylogeny, multicellular organism development and cell development. CBX7, ENPEP, FAIM2, IGF1, NUP62CL and TSC22D3 were associated with the prognosis of CESC, and a prognostic prediction model was constructed using these six genes, which had a good predictive value for the prognosis of cervical cancer within 1, 3 and 5 years (AUC: 0.784, 0.680 and 0.683, respectively). Among them, ENPEP (hazard ratio = 1.3996, 95% confidence interval: 1.0552-1.8565) was identified as an independent prognostic factor. CONCLUSIONS: In this study, a highly accurate prognostic model consisting of six gene signatures was developed to predict the prognosis of patients with cervical cancer, which provides a reference for developing individualized treatment plans for patients.

10.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429071

RESUMO

Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.


Assuntos
Cetonas , NAD , Animais , Camundongos , Ácido alfa-Linolênico , NAD/metabolismo , Racemases e Epimerases , Respiração Celular
11.
J Exp Clin Cancer Res ; 41(1): 323, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380368

RESUMO

BACKGROUND: Intratumoral heterogeneity is the primary challenge in the treatment of glioblastoma (GBM). The presence of glioma stem cells (GSCs) and their conversion between different molecular phenotypes contribute to the complexity of heterogeneity, culminating in preferential resistance to radiotherapy. ARP2/3 (actin-related protein-2/3) complexes (ARPs) are associated with cancer migration, invasion and differentiation, while the implications of ARPs in the phenotype and resistance to radiotherapy of GSCs remain unclear. METHODS: We screened the expression of ARPs in TCGA-GBM and CGGA-GBM databases. Tumor sphere formation assays and limiting dilution assays were applied to assess the implications of ARPC1B in tumorigenesis. Apoptosis, comet, γ-H2AX immunofluorescence (IF), and cell cycle distribution assays were used to evaluate the effect of ARPC1B on radiotherapy resistance. Immunoprecipitation (IP) and mass spectrometry analysis were used to detect ARPC1B-interacting proteins. Immune blot assays were performed to evaluate protein ubiquitination, and deletion mutant constructs were designed to determine the binding sites of protein interactions. The Spearman correlation algorithm was performed to screen for drugs that indicated cell sensitivity by the expression of ARPC1B. An intracranial xenograft GSC mouse model was used to investigate the role of ARPC1B in vivo. RESULTS: We concluded that ARPC1B was significantly upregulated in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of ARPC1B in MES-GSCs reduced tumorigenicity and resistance to IR treatment, whereas overexpression of ARPC1B in PN-GSCs exhibited the opposite effects. Mechanistically, ARPC1B interacted with IFI16 and HuR to maintain protein stability. In detail, the Pyrin of IFI16 and RRM2 of HuR were implicated in binding to ARPC1B, which counteracted TRIM21-mediated degradation of ubiquitination to IFI16 and HuR. Additionally, the function of ARPC1B was dependent on IFI16-induced activation of NF-κB pathway and HuR-induced activation of STAT3 pathway. Finally, we screened AZD6738, an ataxia telangiectasia mutated and rad3-related (ATR) inhibitor, based on the expression of ARPC1B. In addition to ARPC1B expression reflecting cellular sensitivity to AZD6738, the combination of AZD6738 and radiotherapy exhibited potent antitumor effects both in vitro and in vivo. CONCLUSION: ARPC1B promoted MES phenotype maintenance and radiotherapy resistance by inhibiting TRIM21-mediated degradation of IFI16 and HuR, thereby activating the NF-κB and STAT3 signaling pathways, respectively. AZD6738, identified based on ARPC1B expression, exhibited excellent anti-GSC activity in combination with radiotherapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Glioma/genética , Glioma/radioterapia , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosfoproteínas/genética
12.
J Clin Transl Hepatol ; 10(2): 230-237, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35528974

RESUMO

Background and Aims: We compared lung function parameters in nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD), and examined the association between lung function parameters and fibrosis severity in MAFLD. Methods: In this cross-sectional study, we randomly recruited 2,543 middle-aged individuals from 25 communities across four cities in China during 2016 and 2020. All participants received a health check-up including measurement of anthropometric parameters, biochemical variables, liver ultrasonography, and spirometry. The severity of liver disease was assessed by the fibrosis (FIB)-4 score. Results: The prevalence of MAFLD was 20.4% (n=519) and that of NAFLD was 18.4% (n=469). After adjusting for age, sex, adiposity measures, smoking status, and significant alcohol intake, subjects with MAFLD had a significantly lower predicted forced vital capacity (FVC, 88.27±17.60% vs. 90.82±16.85%, p<0.05) and lower 1 s forced expiratory volume (FEV1, 79.89±17.34 vs. 83.02±16.66%, p<0.05) than those with NAFLD. MAFLD with an increased FIB-4 score was significantly associated with decreased lung function. For each 1-point increase in FIB-4, FVC was diminished by 0.507 (95% CI: -0.840, -0.173, p=0.003), and FEV1 was diminished by 0.439 (95% CI: -0.739, -0.140, p=0.004). The results remained unchanged when the statistical analyses was performed separately for men and women. Conclusions: MAFLD was significantly associated with a greater impairment of lung function parameters than NAFLD.

13.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269357

RESUMO

Identification of high-performing sorbent materials is the key step in developing energy-efficient adsorptive separation processes for ethylene production. In this work, a computational screening of metal-organic frameworks (MOFs) for the purification of ethylene from the ternary ethane/ethylene/acetylene mixture under thermodynamic equilibrium conditions is conducted. Modified evaluation metrics are proposed for an efficient description of the performance of MOFs for the ternary mixture separation. Two different separation schemes are proposed and potential MOF adsorbents are identified accordingly. Finally, the relationships between the MOF structural characteristics and its adsorption properties are discussed, which can provide valuable information for optimal MOF design.

14.
ACS Appl Mater Interfaces ; 13(48): 56909-56922, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807583

RESUMO

Stroke is the second leading cause of death globally and the most common cause of severe disability. Several barriers need to be addressed more effectively to treat stroke, including efficient delivery of therapeutic agents, rapid release at the infarct site, precise imaging of the infarct site, and drug distribution monitoring. The present study aimed to develop a bio-responsive theranostic nanoplatform with signal-amplifying capability to deliver rapamycin (RAPA) to ischemic brain tissues and visually monitor drug distribution. A pH-sensitive theranostic RAPA-loaded nanoparticle system was designed since ischemic tissues have a low-pH microenvironment compared with normal tissues. The nanoparticles demonstrated good stability and biocompatibility and could efficiently load rapamycin, followed by its rapid release in acidic environments, thereby improving therapeutic accuracy. The nano-drug-delivery system also exhibited acid-enhanced magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging signal properties, enabling accurate multimodal imaging with minimal background noise, thus improving drug tracing and diagnostic accuracy. Finally, in vivo experiments confirmed that the nanoparticles preferentially aggregated in the ischemic hemisphere and exerted a neuroprotective effect in rats with transient middle cerebral artery occlusion (tMCAO). These pH-sensitive multifunctional theranostic nanoparticles could serve as a potential nanoplatform for drug tracing as well as the treatment and even diagnosis of acute ischemic stroke. Moreover, they could be a universal solution to achieve accurate in vivo imaging and treatment of other diseases.


Assuntos
Materiais Biomiméticos/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/uso terapêutico , Sirolimo/uso terapêutico , Nanomedicina Teranóstica , Doença Aguda , Animais , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , AVC Isquêmico/diagnóstico por imagem , Teste de Materiais , Fármacos Neuroprotetores/química , Células PC12 , Tamanho da Partícula , Ratos , Sirolimo/química
15.
Front Oncol ; 11: 697073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395264

RESUMO

BACKGROUND: Occurrence of portal vein tumor thrombus (PVTT) worsens the outcomes of hepatocellular carcinoma (HCC) and imparts high economic burden on society. Patients with high risks of having hypercoagulation are more likely to experience thrombosis. Herein, we examined how preoperative international normalized ratio (INR) was related to the incidence and extent of PVTT, and associated with survival outcomes in HCC patients following R0 liver resection (LR). METHODS: Patients with HCC and PVTT were enrolled from six major hospitals in China. The overall survival (OS) and recurrence-free survival (RFS) rates of individuals with different INR levels were assessed with Cox regression analysis as well as Kaplan-Meier method. RESULTS: This study included 2207 HCC patients, among whom 1005 patients had concurrent PVTT. HCC patients in the Low INR group had a significantly higher incidence of PVTT and more extensive PVTT than the Normal and High INR groups (P<0.005). Of the 592 HCC subjects who had types I/II PVTT following R0 LR, there were 106 (17.9%), 342 (57.8%) and 144 (24.3%) patients in the High, Normal and Low INR groups, respectively. RFS and OS rates were markedly worse in patients in the Low INR group relative to those in the Normal and High INR groups (median RFS, 4.87 versus 10.77 versus 11.40 months, P<0.001; median OS, 6.30 versus 11.83 versus 12.67 months, P<0.001). CONCLUSION: Preoperative INR influenced the incidence and extent of PVTT in HCC. Particularly, patients with HCC and PVTT in the Low INR group had worse postoperative prognosis relative to the High and Normal INR groups.

16.
Sci Rep ; 11(1): 13647, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211025

RESUMO

This study aimed to evaluate the efficacy and safety of bone cement-augmented pedicle screw fixation for stage III Kümmell disease. Twenty-five patients with stage III Kümmell disease who received bone cement-augmented pedicle screw fixation at the First Affiliated Hospital of Guangzhou University of Chinese Medicine between June 2009 and December 2015 were enrolled. All patients were females with a history of osteoporosis. The vertebral Cobb angle (V-Cobb angle), the fixed segment Cobb Angle (S-Cobb angle), pelvic parameters, visual Analogue Scale (VAS) score, and Oswestry Disability Index (ODI) were assessed preoperatively, postoperatively and at the final follow-up. Complications, loosening rate, operation time, and intraoperative bleeding were recorded. The average lumbar vertebral density T-value was - 3.68 ± 0.71 SD, and the average age was 71.84 ± 5.39. The V-Cobb angle, S-Cobb angle, and Sagittal Vertical Axis (SVA) were significantly smaller postoperatively compared to the preoperative values. The VAS and ODI at 1 month after surgery were 3.60 ± 1.00 and 36.04 ± 6.12%, respectively, which were both significantly lower than before surgery (VAS: 8.56 ± 1.04, ODI: 77.80 ± 6.57%). Bone cement-augmented pedicle screw fixation is a safe and effective treatment for stage III Kümmell disease. It can effectively correct kyphosis, restore and maintain sagittal balance, and maintain spinal stability.


Assuntos
Cimentos Ósseos/uso terapêutico , Fixação Interna de Fraturas , Osteonecrose/cirurgia , Parafusos Pediculares , Doenças da Coluna Vertebral/cirurgia , Idoso , Cimentos Ósseos/efeitos adversos , Feminino , Fixação Interna de Fraturas/efeitos adversos , Humanos , Masculino , Osteonecrose/patologia , Parafusos Pediculares/efeitos adversos , Doenças da Coluna Vertebral/patologia , Resultado do Tratamento
17.
Natl Sci Rev ; 7(8): 1349-1359, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34692163

RESUMO

The membrane-based reverse electrodialysis (RED) technique has a fundamental role in harvesting clean and sustainable osmotic energy existing in the salinity gradient. However, the current designs of membranes cannot cope with the high output power density and robustness. Here, we construct a sulfonated poly (ether ether ketone) (SPEEK) nanochannel membrane with numerous nanochannels for a membrane-based osmotic power generator. The parallel nanochannels with high space charges show excellent cation-selectivity, which could further be improved by adjusting the length and charge density of nanochannels. Based on numerical simulation, the system with space charge shows better conductivity and selectivity than those of a surface-charged nanochannel. The output power density of our proposed membrane-based device reaches up to 5.8 W/m2 by mixing artificial seawater and river water. Additionally, the SPEEK membranes exhibit good mechanical properties, endowing the possibility of creating a high-endurance scale-up membrane-based generator system. We believe that this work provides useful insights into material design and fluid transport for the power generator in osmotic energy conversion.

19.
Appl Mater Today ; 182020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34746366

RESUMO

Disulfiram (DSF) is currently tested in several clinical trials for cancer treatment in combination with copper (Cu) ions. Usually, DSF and Cu are administered in two separate formulations. In the body, DSF and Cu ions form diethyldithiocarbamate copper complex [Cu(DDC)2] which has potent antitumor activities. However, the "two formulation" approach often achieved low Cu(DDC)2 concentration at tumor regions and resulted in compromised anticancer efficacy. Therefore, preformed Cu(DDC)2 complex administered in a single formulation will have better anticancer efficacy. However, the poor aqueous solubility of Cu(DDC)2 is a significant challenge for its clinical use. In this work, a biomimetic nanoparticle formulation of Cu(DDC)2 was produced with a novel SMILE ( Stabilized Metal Ion Ligand complex) method developed in our laboratory to address the drug delivery challenges. The Metal-organic Nanoparticle (MON) is composed of Cu(DDC)2 metal-organic complex core and surface decorated bovine serum albumin (BSA). Importantly, we designed a 3D-printed microfluidic device to further improve the fabrication of BSA/Cu(DDC)2 MONs. This method could precisely control the MON preparation process and also has great potential for large scale production of Cu(DDC)2 MON formulations. We also used a computational modeling approach to simulate the MON formation process in the microfluidic device. The optimized BSA/Cu(DDC)2 MONs demonstrated good physicochemical properties. The MONs also showed potent antitumor activities in the breast cancer cell monolayers as well as the 3D-cultured tumor spheroids. The BSA/Cu(DDC)2 MONs also effectively inhibited the growth of tumors in an orthotopic 4T1 breast tumor model. This current study provided a novel method to prepare a biomimetic MON formulation for DSF/Cu cancer therapy.

20.
World Neurosurg ; 135: e87-e93, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31715415

RESUMO

OBJECTIVE: This study aimed to evaluate the risk factors for adjacent vertebral compression fractures after lumbar spinal fusion with instrumentation. METHODS: A total of 669 patients who received lumbar instrumented spinal fusion between January 2012 and December 2015 were divided into 2 groups according to whether the adjacent vertebral body was fractured. The covariates recorded were age, sex, bone mineral density, and the number of fixed segments. The anatomic variables were pelvic incidence angle (PI), preoperative lumbar lordosis angle (Pre-LL), postoperative lumbar lordosis angle (Post-LL), Pre-LL minus Post-LL (Loss of LL), postoperative pelvic tilt (Post-PT), postoperative sacral slope, Pre-PI-LL mismatch (Pre-PI minus Pre-LL), and Post-PI-LL mismatch (Post-PI minus Post-LL). A 1-way analysis of variance (ANOVA) was performed with the aforementioned parameters, and binary logistic regression analysis was used to determine the relative risk factors. RESULTS: The 669 patients were followed-up for a mean of 2.7 ± 1.1 years (range, 2-4 years). Twenty-seven patients demonstrated fractures in the adjacent vertebral body after surgery. Analysis by 1-way ANOVA demonstrated that age, PI, Pre-LL, Post-LL, Loss of LL, Post-PI-LL mismatch, Post-PT, and osteoporosis were potential risk factors (all parameters, P < 0.001). Furthermore, binary logistic regression analysis showed that a large Loss of LL, osteoporosis, and old age were also risk factors for adjacent vertebral compression fractures. CONCLUSIONS: A greater Loss of LL, osteoporosis, and advanced age may be risk factors for fractures in the adjacent vertebral body of the fixed segment after lumbar fusion fixation.


Assuntos
Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Fraturas da Coluna Vertebral/epidemiologia , Fusão Vertebral/efeitos adversos , Adulto , Idoso , Análise Fatorial , Feminino , Fraturas por Compressão/etiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA