Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 76: 101882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599302

RESUMO

Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.


Assuntos
Células Epiteliais , Imageamento Tridimensional , Aprendizado de Máquina , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Imageamento Tridimensional/métodos , Epitélio Pigmentado da Retina/citologia , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular
2.
J Orthop Res ; 41(6): 1335-1347, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370141

RESUMO

Macrophage infiltration and polarization during lumbar intervertebral disc herniation (LDH) have attracted increased attention but their role remains unclear. To explore macrophage polarization in herniated nucleus pulposus (NP) tissue of patients with LDH and investigate the association between cell frequency and different clinical characteristics or symptoms, we conducted a retrospective study by analyzing NP tissue samples from 79 patients. Clinical features and symptoms, using the visual analog scale (VAS) and Oswestry disability index (ODI), were collected. The macrophage markers CD68, CCR7, CD163, and CD206; pro-inflammatory cytokine TNF-α; and anti-inflammatory factor IL-4 were analyzed by immunohistochemistry. The frequency of polarized macrophages and positivity rate of pro- and anti-inflammatory cytokines showed significant differences in some of clinical characteristics. Specifically, higher CCR7+ and TNF-α + proportions were identified in the high-intensity zone (HIZ) and the type of extrusion and sequestration NP tissue than in non-HIZ and protrude NP tissue. Higher CD206+ and IL-4+ proportion were detected in Modic changes. However, no differences in gender, age, smoking status, Pfirrmann grade, analgesic use, leg pain duration, and segments were found between groups. CD68+ , CCR7+ , and CD206+ cell proportions, and TNF-α and IL-4 showed positive associations with VAS scores preoperation. Associations between ODI and the macrophages markers were weak/insignificant. Our results indicated that macrophage polarization or macrophage-like cells contribute to LDH pathological features. Macrophage populations displaying significant associations with VAS score reflected continuous M1/M2 transition contributing to pain during LDH. These findings may contribute to enhanced/personalized pharmacological interventions for patients with LDH considering pain heterogeneity.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Deslocamento do Disco Intervertebral/patologia , Estudos Retrospectivos , Núcleo Pulposo/patologia , Interleucina-4/metabolismo , Receptores CCR7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dor , Vértebras Lombares/cirurgia , Macrófagos/metabolismo , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia
3.
Front Immunol ; 13: 922173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059551

RESUMO

Macrophage infiltration and polarization have been increasingly observed in intervertebral disc (IVD) degeneration (IDD). However, their biological roles in IDD are still unrevealed. We harvested conditioned media (CM) derived from a spectrum of macrophages induced from THP-1 cells, and examined how they affect nucleus pulposus cells (NPCs) in vitro, by studying cell proliferation, extracellular matrix (ECM) synthesis, and pro-inflammation expression; and in vivo by injection CM in a rat IDD model. Then, high-throughput sequencing was used to detect differentially expressed genes (DEGs). Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks were used to further analysis. Higher CCR7+ (M1 marker) and CD206+ (M2 marker) cell counts were found in the degenerated human IVD tissues as compared with the control. Furthermore, the cell co-culture model showed M1CM attenuated NPC proliferation, downregulated the expression of ECM anabolic genes encoding aggrecan and collagen IIα1, upregulated the expression of ECM catabolic genes encoding MMP-13, and inflammation-related genes encoding IL-1ß, IL-6, and IL-12, while M2CM showed contrasting trends. In IDD model, higher histological scores and lower disc height index were found following M1CM treatment, while M2CM exhibited opposite results. M1CM injection decreased ECM anabolic and increased ECM catabolic, as well as the upregulation of inflammation-related genes after 8 weeks treatment, while M2CM slowed down these trends. Finally, a total of 637 upregulated and 655 downregulated genes were detected in M1CM treated NPCs, and 975 upregulated genes and 930 downregulated genes in the M2CM groups. The top 30 GO terms were shown and the most significant KEGG pathway was cell cycle in both groups. Based on the PPI analysis, the five most significant hub genes were PLK1, KIF20A, RRM2, CDC20, and UBE2C in the M1CM groups and RRM2, CCNB1, CDC20, PLK1, and UBE2C in the M2CM groups. In conclusion, macrophage polarization exhibited diverse roles in IDD progression, with M1CM exacerbating cell proliferation suppression and IVD degeneration, while M2CM attenuated IDD development. These findings may facilitate the further elucidation of the role of macrophage polarization in IDD, and provide novel insights into the therapeutic potential of macrophages.


Assuntos
Degeneração do Disco Intervertebral , Animais , Proliferação de Células , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Macrófagos/metabolismo , Ratos
4.
J Orthop Res ; 40(11): 2488-2501, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35170802

RESUMO

Inflammation is the primary pathological phenomenon associated with disc degeneration; the inflammatory cytokine tumor necrosis factor (TNF-α) plays a crucial role in this pathology. The anti-inflammatory and regenerative effects of M2 macrophages on nucleus pulposus cells (NPCs) in intervertebral disc degeneration (IDD) progression remain unknown. Here, M2 conditioned medium (M2CM) was harvested and purified from human acute monocytic leukaemia cell line (THP-1) cells and mouse peritoneal macrophages, respectively; it was used for culturing human NPCs and a mouse intervertebral disc (IVD) organ culture model. NPCs and IVD organ models were divided into three groups: group 1 treated with 10% fetal bovine serum (control); group 2 treated with 10 ng/ml TNF-α; and group 3 treated with 10 ng/ml TNF-α and M2CM (coculture group). After 2-14 days, cell proliferation, extracellular matrix synthesis, apoptosis, and NPC senescence were assessed. Cell proliferation was reduced in TNF-α-treated NPCs and inhibited in the M2CM co-culture treatment. Moreover, TNF-α treatment enhanced apoptosis, senescence, and expression of inflammatory factor-related genes, including interleukin-6, MMP-13, ADAMTS-4, and ADAMTS-5, whereas M2CM coculture significantly reversed these effects. In addition, co-culture with M2CM promoted aggrecan and collagen II synthesis, but reduced collagen Iα1 levels in TNF-α treatment groups. Using our established three-dimensional murine IVD organ culture model, we show that M2CM suppressed the inhibitory effect of TNF-α-rich environment. Therefore, co-culture with M2CM promotes cell proliferation and extracellular matrix synthesis and inhibits inflammation, apoptosis, and NPC senescence. This study highlights the therapeutic potential of M2CM for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Agrecanas/metabolismo , Animais , Criança , Colágeno/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Núcleo Pulposo/metabolismo , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
5.
Eur J Pharmacol ; 910: 174441, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34474028

RESUMO

Gefitinib, a tyrosine kinase inhibitor, was the first targeted therapy for non-small cell lung cancer (NSCLC). Gefitinib could block human Ether-à-go-go-Related Gene (hERG) channel, an important target in drug-induced long QT syndrome. However, it is unclear whether gefitinib could induce QT interval prolongation. Here, whole-cell patch-clamp technique was used for evaluating the effect of gefitinib on rapidly-activating delayed rectifier K+ current (IKr), slowly-activating delayed rectifier K+ current (IKs), transient outward potassium current (Ito), inward rectifier K+ current (IK1) and on action potentials in guinea pig ventricular myocytes. The Langendorff heart perfusion technique was used to determine drug effect on the ECG. Gefitinib depressed IKr by binding to open and closed hERG channels in a concentration-dependent way (IC50: 1.91 µM). The inhibitory effect of gefitinib on wildtype hERG channels was reduced at the hERG mutants Y652A, S636A, F656V and S631A (IC50: 8.51, 13.97, 18.86, 32.99 µM), indicating that gefitinib is a pore inhibitor of hERG channels. In addition, gefitinib accelerated hERG channel inactivation and decreased channel steady-state inactivation. Gefitinib also decreased IKs with IC50 of 23.8 µM. Moreover, gefitinib increased action potential duration (APD) in guinea pig ventricular myocytes and the corrected QT interval (QTc) in isolated perfused guinea pig hearts in a concentration-dependent way (1-30 µM). These findings indicate that gefitinib could prolong QTc interval by potently blocking hERG channel, modulating kinetic properties of hERG channel. Partial block of KCNQ1/KCNE1 could also contribute to delayed repolarization and prolonged QT interval. Thus, caution should be taken when gefitinib is used for NSCLC treatment.


Assuntos
Gefitinibe/farmacologia , Síndrome do QT Longo/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Eletrocardiografia/efeitos dos fármacos , Cobaias , Células HEK293 , Ventrículos do Coração/efeitos dos fármacos , Humanos , Síndrome do QT Longo/induzido quimicamente , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA