Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 965726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072862

RESUMO

Sterile inflammation characterized by unresolved chronic inflammation is well established to promote the progression of multiple autoimmune diseases, metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, collectively termed as sterile inflammatory diseases. In recent years, substantial evidence has revealed that the inflammatory response is closely related to cardiovascular diseases. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway which is activated by cytoplasmic DNA promotes the activation of interferon regulatory factor 3 (IRF3) or nuclear factor-κB (NF-κB), thus leading to upregulation of the levels of inflammatory factors and interferons (IFNs). Therefore, studying the role of inflammation caused by cGAS-STING pathway in cardiovascular diseases could provide a new therapeutic target for cardiovascular diseases. This review focuses on that cGAS-STING-mediated inflammatory response in the progression of cardiovascular diseases and the prospects of cGAS or STING inhibitors for treatment of cardiovascular diseases.

2.
J Colloid Interface Sci ; 616: 791-802, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248966

RESUMO

The development of stable and efficient non-noble metal-based photocatalysts for water splitting is currently a key but challenging process for effective conversion and storage of sustainable energy. Here, we designed a new non-noble metal composite photocatalyst by covalently connecting nickel molecular ligand (NiL) to the graphitized carbon nitride (CN) framework for photocatalytic hydrogen evolution under visible light irradiation. Compared to CN, NiL-modified CN (NiL/CN) shows excellent photogenerated carrier migration rate. Without Pt as a co-catalyst, NiL/CN exhibits high photocatalytic activity (23.4 µmol h-1) with high stability. Experiments and theoretical calculations disclose that ligand-metal charge transfer (LMCT) mechanism plays a key role on the enhancement of photocatalytic activity. This work provides a promising method for future designing low-cost, high-performance photocatalysts for hydrogen production under solar light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA