Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309602

RESUMO

Endogenous partial denitrification (EPD) has drawn a lot of interest due to its abundant nitrite (NO2--N) accumulation capacity. However, the poor phosphate (PO43--P) removal rate of EPD restricts its promotion and application. In this study, the potentiality of various nano zero-valent iron (nZVI) concentrations (0, 20, 40, and 80 mg/L) on NO2--N accumulation and PO43--P removal in EPD systems had been investigated. Results showed that nZVI improved NO2--N accumulation and PO43--P removal, with the greatest nitrate-to-nitrite transformation ratio (NTR) and PO43--P removal rate of 97.74 % and 64.76 % respectively at the optimum nZVI level (80 mg/L). Microbial community analysis also proved that nZVI had a remarkable influence on the microbial community of EPD. Candidatus_Competibacter was contribute to NO2--N accumulation which was enriched from 24.74 % to 40.02 %. The enrichment of Thauera, Rhodobacteraceae, Pseudomonas were contributed to PO43--P removal. The chemistry of nZVI not only compensated for the deficiency of biological PO43--P removal, but also enhanced NO2--N enrichment. Therefore, nZVI had the huge potentiality to improve the operational performance of the EPD system.


Assuntos
Nitratos , Nitritos , Fósforo , Ferro , Desnitrificação , Dióxido de Nitrogênio , Nitrogênio , Esgotos , Reatores Biológicos
2.
J Cell Commun Signal ; 17(4): 1219-1227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37378812

RESUMO

The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.

3.
Cell Commun Signal ; 21(1): 14, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670446

RESUMO

BACKGROUND: Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS: Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS: Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION: Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.


Assuntos
Estenose da Valva Aórtica , Calcinose , Masculino , Feminino , Humanos , Camundongos , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Meios de Cultivo Condicionados , Calcinose/metabolismo , Calcinose/patologia , Células Cultivadas
4.
Clin Sci (Lond) ; 135(17): 2085-2097, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402501

RESUMO

Although extremely important, the molecular mechanisms that govern aortic aneurysm (AA) formation and progression are still poorly understood. This deficit represents a critical roadblock toward the development of effective pharmaceutical therapies for the treatment of AA. While dysregulation of protein phosphatase 2A (PP2A) is thought to play a role in cardiovascular disease, its role in aortic aneurysm is unknown. The objective of the present study is to test the hypothesis that PP2A regulates abdominal aortic aneurysm (AAA) progression in a murine model. In an angiotensin II-induced AAA murine model, the PP2A inhibitor, LB-100, markedly accelerated AAA progression as demonstrated by increased abdominal aortic dilation and mortality. AAA progression was associated with elevated inflammation and extracellular matrix fragmentation, concomitant with increases in both metalloproteinase activity and reactive oxygen species production. Conversely, administration of a novel class of small molecule activators of PP2A (SMAPs) resulted in an antithetical effect. SMAPs effectively reduced AAA incidence along with the corresponding pathologies that were increased with LB-100 treatment. Mechanistically, modulation of PP2A activities in vivo functioned in part via alteration of the ERK1/2 and NFκB signaling pathways, known regulators of AAA progression. These studies, for the first time, demonstrate a role of PP2A in AAA etiology and demonstrate that PP2A activation may represent a novel strategy for the treatment of abdominal aortic aneurysms.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Ativadores de Enzimas/farmacologia , Proteína Fosfatase 2/metabolismo , Remodelação Vascular/efeitos dos fármacos , Regulação Alostérica , Angiotensina II , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Dilatação Patológica , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Células RAW 264.7
5.
Biomed Pharmacother ; 125: 109985, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066043

RESUMO

Calcific aortic valve disease (CAVD) is caused by valve interstitial cells (VICs) initiating the thickening and calcification of valve leaflets. The present study aimed to investigate whether andrographolide (AGP) could attenuate the calcification of human valve interstitial cells (hVICs). hVICs stimulated by osteoblastic medium (OM) were treated with or without AGP. RNA sequencing was utilized to investigate changes in gene expression. Cell growth and calcification of hVICs were assessed using a CCK8 assay and Alizarin Red S staining, respectively. The expression of the two calcification-related markers, RUNX2 and ALP, were quantified by qRT-PCR, Western blotting, and immunofluorescent staining. The results indicate that hVICs treated with OM plus AGP exhibited decreased Alizarin Red S staining compared with cells treated with OM only in addition to down-regulation of ALP and RUNX2. Mappings of differentially expressed genes (DEGs) in different groups using Venn diagrams during analysis of gene expression profiles, 653 common DEGs were identified that displayed different biological functions and signaling pathways after treatment with AGP. RELA, a core factor of the NF-κB pathway was inhibited by AGP in addition to phosphorylation of AKT and ERK1/2. Thus, AGP attenuated calcification of hVICs. These results demonstrate that AGP, a promising natural product, can attenuate the process of CAVD.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Produtos Biológicos/farmacologia , Calcinose/metabolismo , Diterpenos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/patologia , Produtos Biológicos/química , Calcinose/etiologia , Calcinose/patologia , Diferenciação Celular/efeitos dos fármacos , Biologia Computacional/métodos , Suscetibilidade a Doenças , Diterpenos/química , Perfilação da Expressão Gênica , Humanos , Osteogênese/efeitos dos fármacos , RNA Mensageiro/genética
6.
J Cell Commun Signal ; 12(1): 389-399, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29214510

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a condition in which fat accumulates in the liver of patients without a prior history of alcohol abuse. The most severe form, nonalcoholic steatohepatitis (NASH), often leads to hepatic fibrosis and cirrhosis with ensuing complications. To date, there is no pharmacologic treatment for NASH. The biological effects of CCN3, specifically its role in the regulation of inflammation, reactive oxygen species production and angiogenesis, have been recently established. Additional data suggests that CCN3 is associated with the development of tumors in the liver yet may be protective of liver fibrogenesis. Currently, the role of CCN3 in NAFLD/NASH remains unexplored. Therefore, the objective of our investigation was to decipher the role of myeloid-deficient CCN3 in the pathogenesis of NASH and the underlying mechanisms of CCN3 in modulation of hepatic function. Wild type and myeloid CCN3-deficient mice were fed a methionine- and choline-deficient diet to induced NASH. Increased lipid, cholesterol, and cholesterol ester accumulation was observed in myeloid CCN3-deficient mice when compared to the control group. This disease state was associated with alterations of key genes involved in lipid synthesis, ß-oxidation and lipid uptake. Additionally, the levels of important molecules critical for inflammation, ROS generation, ER stress and liver injury were significantly elevated; as was the observed severity of hepatic apoptosis and necroptosis. Therefore, CCN3 is critical for protection from hepatic apoptosis and necroptosis in our induced NASH model and our findings suggest that CCN3 can be exploited as a therapeutic target for the treatment of NASH.

7.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 781-792, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024939

RESUMO

Receptor for advanced glycation end products (RAGE) and endoplasmic reticulum (ER) stress have been shown to be involved in calcific aortic valve disease (CAVD). However, the association between RAGE and ER stress remains unknown in the pathogenesis of CAVD. The current study aims to test the hypothesis that RAGE deficiency alleviates aortic valve calcification via the inhibition of ER stress. Up-regulation of RAGE and ER stress markers in calcified human aortic valves were confirmed by immunoblotting. Aortic valve calcification was evaluated in atherosclerotic prone ApoE-/- mice or in mice with dual deficiencies of ApoE and RAGE (ApoE-/-RAGE-/-) fed with high cholesterol diet for 24weeks. Echocardiography and histological examination show that genetic deficiency of RAGE attenuates aortic valve calcification in ApoE-/- mice. Meanwhile, RAGE deficiency inhibited the osteogenic signaling and ER stress activation as well as suppressed macrophage infiltration in vivo. Cultured human aortic valve interstitial cells (AVICs) were treated with high molecular group box 1 protein (HMGB1) as in vitro model. We found that HMGB1 induced osteoblastic differentiation and calcification through RAGE/ER stress. Furthermore, Sox9 up-regulation and intranuclear translocation mediated the pro-osteogenic effect of HMGB1 on AVICs. RAGE or ER stress knockdown reduced the up-regulation of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in human AVICs exposed to HMGB1.These novel findings demonstrate that RAGE deficiency protects against aortic valve calcification in high cholesterol diet-fed ApoE-/- mice via inhibition of ER stress. HMGB1 induces AVIC osteoblastic differentiation and calcification through RAGE/ER stress/Sox9 pathway.


Assuntos
Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Apolipoproteínas E/genética , Calcinose/genética , Calcinose/patologia , Estresse do Retículo Endoplasmático , Deleção de Genes , Receptor para Produtos Finais de Glicação Avançada/genética , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Apolipoproteínas E/metabolismo , Calcinose/metabolismo , Células Cultivadas , Colesterol/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA