Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fundam Res ; 4(3): 589-602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933191

RESUMO

Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.

2.
Immun Inflamm Dis ; 12(6): e1320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888378

RESUMO

BACKGROUND: At present, neonatal hypoxic-ischemic encephalopathy (HIE), especially moderate to severe HIE, is a challenging disease for neonatologists to treat, and new alternative/complementary treatments are urgently needed. The neuroinflammatory cascade triggered by hypoxia-ischemia (HI) insult is one of the core pathological mechanisms of HIE. Early inhibition of neuroinflammation provides long-term neuroprotection. Plant-derived monomers have impressive anti-inflammatory effects. Aloesin (ALO) has been shown to have significant anti-inflammatory and antioxidant effects in diseases such as ulcerative colitis, but its role in HIE is unclear. To this end, we conducted a series of experiments to explore the potential mechanism of ALO in preventing and treating brain damage caused by HI insult. MATERIALS AND METHODS: Hypoxic-ischemic brain damage (HIBD) was induced in 7-day-old Institute of Cancer Research (ICR) mice, which were then treated with 20 mg/kg ALO. The neuroprotective effects of ALO on HIBD and the underlying mechanism were evaluated through neurobehavioral testing, infarct size measurement, apoptosis detection, protein and messenger RNA level determination, immunofluorescence, and molecular docking. RESULTS: ALO alleviated the long-term neurobehavioral deficits caused by HI insult; reduced the extent of cerebral infarction; inhibited cell apoptosis; decreased the levels of the inflammatory factors interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α; activated microglia and astrocytes; and downregulated the protein expression of members in the TLR4 signaling pathway. In addition, molecular docking showed that ALO can bind stably to TLR4. CONCLUSION: ALO ameliorated HIBD in neonatal mice by inhibiting the neuroinflammatory response mediated by TLR4 signaling.


Assuntos
Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Camundongos Endogâmicos ICR , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Simulação de Acoplamento Molecular
3.
Plant J ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606539

RESUMO

The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.

4.
Plants (Basel) ; 13(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276775

RESUMO

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.

5.
Ann Plast Surg ; 91(6): 763-770, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962184

RESUMO

ABSTRACT: The purpose of this study was to introduce a modified suture technique and to compare its effects on skin scar formation with 2 traditional suture methods: simple interrupted suture (SIS) and vertical mattress suture (VMS). Three groups of healthy adult female Sprague-Dawley rats were selected (6 replicates in each group), and the full-thickness skin of 5 cm × 0.2 cm was cut off on the back of the rats after anesthesia. The wounds were then sutured using 1 of the 3 methods for each group: SIS, VMS, and a newly introduced modified vertical mattress suture (M-VMS) technique with the needle reinsertion at the exit point. A traction device was installed on the back of the rats to achieve high tension wounds. The tensile distance was increased by 1 mm every day for 20 days. After 20 days of healing, the hematoxylin-eosin staining method was used for observation of scar morphology. The collagen production rate was measured by Masson staining, and the type I collagen and type III collagen were detected by the immunofluorescence method. Immunohistochemical staining was used to detect the expression of myofibroblast marker α-smooth muscle actin, and real-time quantitative polymerase chain reaction and Western blot techniques were used to detect the expressions of transforming growth factors TGFß1, TGFß2, and TGFß3 to understand the mechanisms of scar formation. Results showed that the quantity and density of collagen fibers were both lower in the M-VMS group than in the other 2 groups. Immunofluorescence results showed that type I collagen was significantly lower, whereas type III collagen was significantly higher in the M-VMS group than in the other 2 groups. The expressions of α-smooth muscle actin and TGFß1 both were lower in the M-VMS group than in the other 2 groups. The expression of TGFß2 and TGFß3 had no obvious difference among the 3 groups. For wounds under high tension, compared with SIS and VMS methods, the M-VMS technique we proposed can reduce scar formation due to the reduction of collagen formation, myofibroblast expression, and TGFß1 expression.


Assuntos
Cicatriz , Colágeno Tipo I , Ratos , Feminino , Animais , Cicatriz/prevenção & controle , Colágeno Tipo III , Actinas , Ratos Sprague-Dawley , Colágeno , Técnicas de Sutura
6.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427874

RESUMO

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Assuntos
Alquil e Aril Transferases , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Alquil e Aril Transferases/genética
7.
Plant Physiol ; 193(1): 756-774, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37232407

RESUMO

Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.


Assuntos
Phytophthora infestans , Proteínas/metabolismo , Imunidade Vegetal/genética , Virulência , Etilenos/metabolismo , Doenças das Plantas , Nicotiana/genética , Nicotiana/metabolismo
8.
Front Microbiol ; 13: 1001540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110302

RESUMO

Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is an important soilborne fungal pathogen that causes the most devastating banana disease. Effectors secreted by microbes contribute to pathogen virulence on host plants in plant-microbe interactions. However, functions of Foc TR4 effectors remain largely unexplored. In this study, we characterized a novel cupin_1 domain-containing protein (FoCupin1) from Foc TR4. Sequence analysis indicated that the homologous proteins of FoCupin1 in phytopathogenic fungi were evolutionarily conserved. Furthermore, FoCupin1 could suppress BAX-mediated cell death and significantly downregulate the expression of defense-related genes in tobacco by using the Agrobacterium-mediated transient expression system. FoCupin1 was highly induced in the early stage of Foc TR4 infection. The deletion of FoCupin1 gene did not affect Foc TR4 growth and conidiation. However, FoCupin1 deletion significantly reduced Foc TR4 virulence on banana plants, which was further confirmed by biomass assay. The expression of the defense-related genes in banana was significantly induced after inoculation with FoCupin1 mutants. These results collectively indicate FoCupin1 is a putative effector protein that plays an essential role in Foc TR4 pathogenicity. These findings suggest a novel role for cupin_1 domain-containing proteins and deepen our understanding of effector-mediated Foc TR4 pathogenesis.

9.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409293

RESUMO

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), seriously affects fruit quality and yield, leading to significant economic losses around the world. Understanding the mechanism of Xcc virulence is important for the effective control of Xcc infection. In this report, we investigate the role of a protein named HemK in the regulation of the virulence traits of Xcc. The hemK gene was deleted in the Xcc jx-6 background, and the ΔhemK mutant phenotypically displayed significantly decreased motility, biofilm formation, extracellular enzymes, and polysaccharides production, as well as increased sensitivity to oxidative stress and high temperatures. In accordance with the role of HemK in the regulation of a variety of virulence-associated phenotypes, the deletion of hemK resulted in reduced virulence on citrus plants as well as a compromised hypersensitive response on a non-host plant, Nicotiana benthamiana. These results indicated that HemK is required for the virulence of Xcc. To characterize the regulatory effect of hemK deletion on gene expression, RNA sequencing analysis was conducted using the wild-type Xcc jx-6 strain and its isogenic ΔhemK mutant strain, grown in XVM2 medium. Comparative transcriptome analysis of these two strains revealed that hemK deletion specifically changed the expression of several virulence-related genes associated with the bacterial secretion system, chemotaxis, and quorum sensing, and the expression of various genes related to nutrient utilization including amino acid metabolism, carbohydrate metabolism, and energy metabolism. In conclusion, our results indicate that HemK plays an essential role in virulence, the regulation of virulence factor synthesis, and the nutrient utilization of Xcc.


Assuntos
Citrus , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/metabolismo , Metiltransferases/metabolismo , Nutrientes , Doenças das Plantas/microbiologia , Virulência/genética
10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(1): 92-97, 2022 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-35038805

RESUMO

OBJECTIVE: To investigate the vascular anatomy and the clinical application of type Ⅲ perforator flap based on the oblique branch of lateral circumflex femoral artery on skin soft tissue defect at the limbs. METHODS: Vascular anatomy of anterolateral thigh flap was performed on a 43-year-old male cadaver perfused with red latex, and the travel and perforating distribution of the oblique branches of lateral circumflex femoral artery were observed. A retrospective case series study was used to analyze the clinical data of 12 patients with skin soft tissue defects of the extremities admitted between January 2018 and September 2019, including 9 males and 3 females; aged from 18 to 65 years, with a median age of 32 years. The injury site included 7 cases of foot and ankle, 3 cases of calf, and 2 cases of hand. The wound size was ranged from 9 cm×7 cm to 28 cm×10 cm. The time from injury to operation was 1-2 weeks, with an average of 10 days. All patients were repaired with type Ⅲ perforator flap based on the oblique branch of lateral circumflex femoral artery, including 3 cases of single-leaf flap, 6 cases of double-leaf flaps, and 3 cases of tri-leaf flaps. The flap ranged from 15 cm×5 cm to 28 cm×10 cm. The donor site was directly sutured or repaired with local flap. The flap survival and complications were observed after operation. RESULTS: The results of vascular anatomy showed that the lateral femoral circumflex artery sent out transverse branches, oblique branches, and descending branches. The oblique branches sent out multiple muscle perforating branches along the way, the perforating branches passed through the anterolateral femoral muscle, and the blood supply scope was the skin of the anterolateral femoral region. The clinical results showed that all flaps survived completely and the incisions healed by first intension. There was no complication such as vascular crisis. All 12 patients were followed up 3-12 months, with an average of 7 months. The appearance and texture of the flap were good. At last follow-up, according to the British Medical Research Council (BMRC) Society for neurological trauma standard, the sensory of the flap reached S 2 in 9 cases and S 3 in 3 cases. Linear scar remained in the donor area, without pain, pruritus, tactile allergy, and other discomfort. The patients and their families were satisfied. CONCLUSION: Type Ⅲ perforator flap based on the oblique branch of lateral circumflex femoral artery is a reliable method for repairing the soft tissue defect of the limbs, with reliable blood supply, large cutting area, various types of perforator flaps.


Assuntos
Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Adulto , Feminino , Artéria Femoral/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Transplante de Pele , Lesões dos Tecidos Moles/cirurgia , Coxa da Perna/cirurgia , Resultado do Tratamento
11.
Front Plant Sci ; 12: 783438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899811

RESUMO

As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and ß-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.

12.
J Hazard Mater ; 411: 125026, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33461010

RESUMO

Ester-containing organophosphate, carbamate, and pyrethroid (OCP) pesticides are used worldwide to minimize the impact of pests and increase agricultural production. The toxicity of these chemicals to humans and other organisms has been widely reported. Chemically, these pesticides share an ester bond in their parent structures. A particular group of hydrolases, known as esterases, can catalyze the first step in ester-bond hydrolysis, and this initial regulatory metabolic reaction accelerates the degradation of OCP pesticides. Esterases can be naturally found in plants, animals, and microorganisms. Previous research on the esterase enzyme mechanisms revealed that the active sites of esterases contain serine residues that catalyze reactions via a nucleophilic attack on the substrates. In this review, we have compiled the previous research on esterases from different sources to determine and summarize the current knowledge of their properties, classifications, structures, mechanisms, and their applications in the removal of pesticides from the environment. This review will enhance the understanding of the scientific community when studying esterases and their applications for the degradation of broad-spectrum ester-containing pesticides.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Animais , Carbamatos , Esterases , Humanos , Organofosfatos
13.
Front Pharmacol ; 12: 806012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095514

RESUMO

Background: Hydrogen sulfide (H2S) is a new type of gas neurotransmitter discovered in recent years. It plays an important role in various physiological activities. The hypothalamus paraventricular nucleus (PVN) is an important nucleus that regulates gastric function. This study aimed to clarify the role of H2S in the paraventricular nucleus of the hypothalamus on the gastric function of rats. Methods: An immunofluorescence histochemistry double-labelling technique was used to determine whether cystathionine-beta-synthase (CBS) and c-Fos neurons are involved in PVN stress. Through microinjection of different concentrations of NaHS, physiological saline (PS), D-2-Amino-5-phosphonovaleric acid (D-AP5), and pyrrolidine dithiocarbamate (PDTC), we observed gastric motility and gastric acid secretion. Results: c-Fos and CBS co-expressed the most positive neurons after 1 h of restraint and immersion, followed by 3 h, and the least was at 0 h. After injection of different concentrations of NaHS into the PVN, gastric motility and gastric acid secretion in rats were significantly inhibited and promoted, respectively (p < 0.01); however, injection of normal saline, D-AP5, and PDTC did not cause any significant change (p > 0.05). The suppressive effect of NaHS on gastrointestinal motility and the promotional effect of NaHS on gastric acid secretion could be prevented by D-AP5, a specific N-methyl-D-aspartic acid (NMDA) receptor antagonist, and PDTC, an NF-κB inhibitor. Conclusion: There are neurons co-expressing CBS and c-Fos in the PVN, and the injection of NaHS into the PVN can inhibit gastric motility and promote gastric acid secretion in rats. This effect may be mediated by NMDA receptors and the NF-κB signalling pathway.

14.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273000

RESUMO

Aspergillus flavus is an agriculturally and medically important filamentous fungus that produces mycotoxins, including aflatoxins, which are potent carcinogens. Here, we generated short- and long-read transcript sequence data from the growth of A. flavus strain NRRL 3357 under both typical and stress conditions to produce a new annotation of its genome.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 790-796, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33236602

RESUMO

OBJECTIVE: The effect of Smad7 on epithelial-Mesenchymal Transition (EMT) of keloid keratinocytes was studied. METHODS: Culture formed keloid cutin cells (KK) and normal skin cutin cell (NK cells), built the Smad7 too slow virus slow virus vector and Smad7 interference expression vector, screening the best expression and interfering with the slow virus infection NK and KK cells respectively, and contrast carrier puro screening stable expression cell lines, stem cells can be divided into 8 groups: NK-Control (normal training of NK cells); NK-NC (NK cells screened against lentivirus); NK-shSmad7 (NK cells that interfere with lentivirus screening); NK-mSmad7 (NK cells screened for overexpression of lentivirus); KK-control (normal cultured KK cells); KK-NC (KK cells screened against lentivirus); KK-shSmad7 (KK cells that interfere with lentivirus screening); KK-mSmad7 (KK cells screened for overexpression of lentivirus). Cell proliferation was observed by the CCK-8 method, cell apoptosis was detected by flow cytometry, cell migration ability was detected by Transwell chamber, and expression of key proteins (N-cadherin and Occludin) in epithelium-interstitial transform was detected by Western blot. RESULTS: The Smad7 interfering lentivirus vector and Smad7 overexpressing lentivirus vector were successfully constructed. Interference with Smad7 can promote NK cell and KK cell proliferation and migration, and inhibit KK cell apoptosis, but it has no significant effect on NK cell apoptosis ( P>0.05). Overexpression of Smad7 inhibited the proliferation and migration of NK cells and KK cells, and promoted their apoptosis. After interfering with lentivirus infection, NK cells and KK cells showed decreased expression of Occludin protein compared with NC group ( P<0.01), increased N-cadherin protein expression in KK cells ( P<0.01), but there was no significant change in N-cadherin protein expression in NK cells ( P>0.05); After lentivirus overexpression, NK and KK cells showed increased expression of Occludin protein ( P<0.05), the expression of N-cadherin protein in NK cells decreased ( P<0.05), but there was no significant change in N-cadherin protein expression in KK cells ( P>0.05). CONCLUSION: The regulation of Smad7 gene can affect the EMT in normal skin keratinocytes and keloid keratinocytes, and further regulate the ability of cell proliferation, migration and apoptosis. The effect of Smad7 gene regulation on EMT in keloid keratinocytes was greater than that on normal skin keratinocytes.


Assuntos
Transição Epitelial-Mesenquimal , Queloide , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Humanos , Queloide/genética , Queloide/patologia , Queratinócitos/metabolismo , Proteína Smad7/genética
16.
J Cell Biochem ; 120(5): 7309-7322, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30417424

RESUMO

Inhibitors of the bromodomain and extraterminal domain family (BETi) offer a new approach to treat hematological malignancies, with leukemias containing mixed lineage leukemia rearrangements being especially sensitive due to a reliance on the regulation of transcription elongation. We explored the mechanism of action of BETi in cells expressing the t(8;21), and show that these compounds reduced the size of acute myeloid leukemia cells, triggered a rapid but reversible G0 /G1 arrest, and with time, cause cell death. Meta-analysis of PRO-seq data identified ribosomal genes, which are regulated by MYC, were downregulated within 3 hours of addition of the BETi. This reduction of MYC regulated metabolic genes coincided with the loss of mitochondrial respiration and large reductions in the glycolytic rate. In addition, gene expression analysis showed that transcription of BCL2 was rapidly affected by BETi but this did not cause dramatic increases in cell death. Cell cycle arrest, lowered metabolic activity, and reduced BCL2 levels suggested that a second compound was needed to push these cells over the apoptotic threshold. Indeed, low doses of the BCL2 inhibitor, venetoclax, in combination with the BETi was a potent combination in t(8;21) containing cells. Thus, BET inhibitors that affect MYC and BCL2 expression should be considered for combination therapy with venetoclax.

17.
Cell Rep ; 16(7): 2003-16, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498870

RESUMO

Bromodomain and extra-terminal domain (BET) family inhibitors offer an approach to treating hematological malignancies. We used precision nuclear run-on transcription sequencing (PRO-seq) to create high-resolution maps of active RNA polymerases across the genome in t(8;21) acute myeloid leukemia (AML), as these polymerases are exceptionally sensitive to BET inhibitors. PRO-seq identified over 1,400 genes showing impaired release of promoter-proximal paused RNA polymerases, including the stem cell factor receptor tyrosine kinase KIT that is mutated in t(8;21) AML. PRO-seq also identified an enhancer 3' to KIT. Chromosome conformation capture confirmed contacts between this enhancer and the KIT promoter, while CRISPRi-mediated repression of this enhancer impaired cell growth. PRO-seq also identified microRNAs, including MIR29C and MIR29B2, that target the anti-apoptotic factor MCL1 and were repressed by BET inhibitors. MCL1 protein was upregulated, and inhibition of BET proteins sensitized t(8:21)-containing cells to MCL1 inhibition, suggesting a potential mechanism of resistance to BET-inhibitor-induced cell death.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Translocação Genética , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Polimerases Dirigidas por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Elementos Facilitadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transcrição Gênica , Triazóis/farmacologia
18.
Sci Rep ; 5: 14863, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26443006

RESUMO

Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential.

19.
J Integr Plant Biol ; 51(2): 207-23, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19200160

RESUMO

The proteome of the Arabidopsis flower has not been extensively studied previously. Here, we report a proteomic analysis of the wild type Arabidopsis flower. Using both two-dimensional electrophoresis/mass spectrometry (2-DGE/MS) and multi-dimensional protein identification technology (MudPIT) approaches, we identified 2,446 proteins. Although a single experiment or analysis uncovered only a subset of the proteins we identified, a combination of multiple experiments and analyses facilitated the detection of a greater number of proteins. When proteins are grouped according to RNA expression levels revealed by microarray experiments, we found that proteins encoded by genes with relatively high levels of expression were detected with greater frequencies. On the other hand, at the level of the individual gene/protein, there was not a good correlation between protein spot intensity and microarray values. We also obtained strong evidence for post-translational modification from 2-DGE and MudPIT data. We detected proteins that are annotated to function in protein synthesis, folding, modification, and degradation, as well as the presence of regulatory proteins such as transcription factors and protein kinases. Finally, sequence and evolutionary analysis of genes for active methyl group metabolisms suggests that these genes are highly conserved. Our results allow the formulation of hypotheses regarding post-translational regulation of proteins in the flower, providing new understanding about Arabidopsis flower development and physiology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma , Arabidopsis/genética , Biologia Computacional , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Metilação , Filogenia , RNA Mensageiro/metabolismo , S-Adenosilmetionina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA