Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Virchows Arch ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879691

RESUMO

Histological assessment of autoimmune hepatitis (AIH) is challenging. As one of the possible results of these challenges, nonclassical features such as bile-duct injury stays understudied in AIH. We aim to develop a deep learning tool (artificial intelligence for autoimmune hepatitis [AI(H)]) that analyzes the liver biopsies and provides reproducible, quantifiable, and interpretable results directly from routine pathology slides. A total of 123 pre-treatment liver biopsies, whole-slide images with confirmed AIH diagnosis from the archives of the Institute of Pathology at University Hospital Basel, were used to train several convolutional neural network models in the Aiforia artificial intelligence (AI) platform. The performance of AI models was evaluated on independent test set slides against pathologist's manual annotations. The AI models were 99.4%, 88.0%, 83.9%, 81.7%, and 79.2% accurate (ratios of correct predictions) for tissue detection, liver microanatomy, necroinflammation features, bile duct damage detection, and portal inflammation detection, respectively, on hematoxylin and eosin-stained slides. Additionally, the immune cells model could detect and classify different immune cells (lymphocyte, plasma cell, macrophage, eosinophil, and neutrophil) with 72.4% accuracy. On Sirius red-stained slides, the test accuracies were 99.4%, 94.0%, and 87.6% for tissue detection, liver microanatomy, and fibrosis detection, respectively. Additionally, AI(H) showed bile duct injury in 81 AIH cases (68.6%). The AI models were found to be accurate and efficient in predicting various morphological components of AIH biopsies. The computational analysis of biopsy slides provides detailed spatial and density data of immune cells in AIH landscape, which is difficult by manual counting. AI(H) can aid in improving the reproducibility of AIH biopsy assessment and bring new descriptive and quantitative aspects to AIH histology.

2.
Int Immunopharmacol ; 130: 111782, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442579

RESUMO

Although breakthroughs have been achieved with immune checkpoint inhibitors (ICI) therapy, some tumors do not respond to those therapies due to primary or acquired resistance. GARP, a type I transmembrane cell surface docking receptor mediating latent transforming growth factor-ß (TGF-ß) and abundantly expressed on regulatory T lymphocytes and platelets, is a potential target to render these tumors responsive to ICI therapy, and enhancing anti-tumor response especially combined with ICI. To facilitate these research efforts, we developed humanized mouse models expressing humanized GARP (hGARP) instead of their mouse counterparts, enabling in vivo assessment of GARP-targeting agents. We created GARP-humanized mice by replacing the mouse Garp gene with its human homolog. Then, comprehensive experiments, including expression analysis, immunophenotyping, functional assessments, and pharmacologic assays, were performed to characterize the mouse model accurately. The Tregs and platelets in the B-hGARP mice (The letter B is the first letter of the company's English name, Biocytogen.) expressed human GARP, without expression of mouse GARP. Similar T, B, NK, DCs, monocytes and macrophages frequencies were identified in the spleen and blood of B-hGARP and WT mice, indicating that the humanization of GARP did not change the distribution of immune cell in these compartments. When combined with anti-PD-1, monoclonal antibodies (mAbs) against GARP/TGF-ß1 complexes demonstrated enhanced in vivo anti-tumor activity compared to monotherapy with either agent. The novel hGARP model serves as a valuable tool for evaluating human GARP-targeting antibodies in immuno-oncology, which may enable preclinical studies to assess and validate new therapeutics targeting GARP. Furthermore, intercrosses of this model with ICI humanized models could facilitate the evaluation of combination therapies.


Assuntos
Anticorpos Monoclonais , Proteínas de Membrana , Neoplasias , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Plaquetas/metabolismo , Modelos Animais de Doenças , Neoplasias/terapia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256235

RESUMO

The excellent physicochemical properties of two-dimensional transition-metal dichalcogenides (2D TMDCs) such as WS2 and WSe2 provide potential benefits for biomedical applications, such as drug delivery, photothermal therapy, and bioimaging. WS2 and WSe2 have recently been used as chemosensitizers; however, the detailed molecular basis underlying WS2- and WSe2-induced sensitization remains elusive. Our recent findings showed that 2D TMDCs with different thicknesses and different element compositions induced autophagy in normal human bronchial epithelial cells and mouse alveolar macrophages at sublethal concentrations. Here, we explored the mechanism by which WS2 and WSe2 act as sensitizers to increase lung cancer cell susceptibility to chemotherapeutic agents. The results showed that WS2 and WSe2 enhanced autophagy flux in A549 lung cancer cells at sublethal concentrations without causing significant cell death. Through the autophagy-specific RT2 Profiler PCR Array, we identified the genes significantly affected by WS2 and WSe2 treatment. Furthermore, the key genes that play central roles in regulating autophagy were identified by constructing a molecular interaction network. A mechanism investigation uncovered that WS2 and WSe2 activated autophagy-related signaling pathways by interacting with different cell surface proteins or cytoplasmic proteins. By utilizing this mechanism, the efficacy of the chemotherapeutic agent doxorubicin was enhanced by WS2 and WSe2 pre-treatment in A549 lung cancer cells. This study revealed a feature of WS2 and WSe2 in cancer therapy, in which they eliminate the resistance of A549 lung cancer cells against doxorubicin, at least partially, by inducing autophagy.


Assuntos
Doxorrubicina , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Células A549 , Doxorrubicina/farmacologia , Autofagia , Células Epiteliais
4.
J Agric Food Chem ; 71(46): 17775-17787, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37936369

RESUMO

Hyperuricemia nephropathy (HN) is a metabolic disease characterized by tubular damage, tubulointerstitial fibrosis, and uric acid kidney stones and has been demonstrated to be associated with hyperuricemia. Coffee leaf tea is drunk as a functional beverage. However, its prevention effects on HN remain to be explored. This study showed that coffee leaf tea extracts (TE) contain 19 polyphenols, with a total content of 550.15 ± 27.58 mg GAE/g. TE decreased serum uric acid levels via inhibiting XOD activities and modulating the expression of urate transporters (GLUT9, OAT3, and ABCG2) in HN rats. TE prevented HN-induced liver and kidney damage and attenuated renal fibrosis. Moreover, it upregulated the abundance of SCFA-producing bacteria (Phascolarctobacterium, Alloprevotella, and Butyricicoccus) in the gut and reversed the amino acid-related metabolism disorder caused by HN. TE also decreased the circulating LPS and d-lactate levels and increased the fecal SCFA levels. This study supported the preliminary and indicative effect of coffee leaf tea in the prevention of hyperuricemia and HN.


Assuntos
Coffea , Microbioma Gastrointestinal , Hiperuricemia , Nefropatias , Ratos , Animais , Ácido Úrico/metabolismo , Coffea/metabolismo , Nefropatias/metabolismo , Chá/metabolismo , Aminoácidos/metabolismo , Rim/metabolismo
5.
Artif Cells Nanomed Biotechnol ; 51(1): 532-546, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948136

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.


Assuntos
Carcinoma Ductal Pancreático , Exossomos , Neoplasias Pancreáticas , Humanos , Dasatinibe/farmacologia , Dasatinibe/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Lipossomos/metabolismo , Neoplasias Pancreáticas
6.
Nat Prod Res ; : 1-5, 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37867305

RESUMO

Natural products, especially fungal secondary metabolites, have been served as valuable sources of drug leads in pharmaceutical industry. Medicinal plants-associated endophytic fungi possess a well-developed secondary metabolism. In this study, chemical investigation on Penicillium ochrochloron YT2022-65, an endophytic fungus associated with Lonicera Japonica, led to the isolation of six structurally diversified indole alkaloids, including a new one, namely peniochroloid A (1), as well as five previously reported alkaloids, flavonoid B (2), brocaeloid C (3), isoroquefortine C (4), roquefortine C (5), and dihydrocarneamide A (6). Their structures, including the absolute configuration of 1, were determined by a combined analysis of HRESIMS, NMR spectroscopic data, and calculation of the optical rotation. Their cytotoxicity against A549, HepG2, MCF-7, and THP-1 cell lines were evaluated in vitro. The new compound 1 was found to possess considerable cytotoxicity against MCF-7 and THP-1 cell lines with IC50 values of 10.2 and 11.0 µM, respectively.

7.
Front Immunol ; 14: 1161869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449205

RESUMO

Introduction: Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results: Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions: Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Monócitos , Antígeno CTLA-4 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Imunoterapia/métodos , Microambiente Tumoral
8.
J Agric Food Chem ; 71(30): 11615-11626, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489634

RESUMO

Lipid oxidation can produce lipid oxidation products (LOPs), which further react with proteins and affect their structure and digestibility, although the underlying mechanism remains unclear. Herein, we investigated the conformation and digestibility of proteins induced by LOPs after thermal treatment. Digestibility of myoglobin (Mb) affected by trans,trans,-2,4-decadienal (2,4-Dec) was significantly reduced under high temperature (100-180 °C). The peptides digested from Mb modified with 2,4-Dec during thermal processing revealed that the quantity of peptides decreased with increasing 2,4-Dec concentrations. Proteomic analysis showed that 2,4-Dec covalently binds to Mb, and the extent of modification was in the following order: lysine > histidine > arginine. Moreover, the secondary structure, intrinsic fluorescence, and surface hydrophobicity results suggested that 2,4-Dec induced changes in Mb, leading to a tighter spatial structure and aggregation, and exposure of fewer recognition sites of the enzyme and thermal treatment assisted these changes in the structure. Meanwhile, molecular dynamics simulations elucidated the molecular mechanisms underlying the effect of 2,4-Dec and temperature on the digestion and structure of Mb.


Assuntos
Mioglobina , Proteômica , Mioglobina/química , Temperatura Alta , Peptídeos/análise , Lipídeos/química
9.
Exp Anim ; 72(4): 535-545, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407484

RESUMO

CD36 (also known as scavenger receptor B2) is a multifunctional receptor that mediates lipid uptake, advanced oxidation protein products, and immunological recognition, and has roles in lipid accumulation, apoptosis, as well as in metastatic colonization in cancer. CD36 is involved in tumor immunity, metastatic invasion, and therapy resistance through various molecular mechanisms. Targeting CD36 has emerged as an effective strategy for tumor immunotherapy. In this study, we have successfully generated a novel hCD36 mouse (Unless otherwise stated, hCD36 mouse below refer to homozygous hCD36 mouse) strain where the sequences encoding the extracellular domains of the mouse Cd36 gene were replaced with the corresponding human sequences. The results showed that the hCD36 mice only expressed human CD36, and the proportion of each lymphocyte was not significantly changed compared with wild-type mice. Furthermore, CD36 monoclonal antibody could significantly inhibit tumor growth after treatment. Therefore, the hCD36 mouse represent a validated preclinical mouse model for the evaluation of tumor immunotherapy targeting CD36.


Assuntos
Antígenos CD36 , Neoplasias , Camundongos , Humanos , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Receptores Depuradores/metabolismo , Neoplasias/genética , Neoplasias/terapia , Lipídeos
10.
Front Bioeng Biotechnol ; 11: 1133090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122853

RESUMO

Organoids are advancing the development of accurate prediction of drug efficacy and toxicity in vitro. These advancements are attributed to the ability of organoids to recapitulate key structural and functional features of organs and parent tumor. Specifically, organoids are self-organized assembly with a multi-scale structure of 30-800 µm, which exacerbates the difficulty of non-destructive three-dimensional (3D) imaging, tracking and classification analysis for organoid clusters by traditional microscopy techniques. Here, we devise a 3D imaging, segmentation and analysis method based on Optical coherence tomography (OCT) technology and deep convolutional neural networks (CNNs) for printed organoid clusters (Organoid Printing and optical coherence tomography-based analysis, OPO). The results demonstrate that the organoid scale influences the segmentation effect of the neural network. The multi-scale information-guided optimized EGO-Net we designed achieves the best results, especially showing better recognition workout for the biologically significant organoid with diameter ≥50 µm than other neural networks. Moreover, OPO achieves to reconstruct the multiscale structure of organoid clusters within printed microbeads and calibrate the printing errors by segmenting the printed microbeads edges. Overall, the classification, tracking and quantitative analysis based on image reveal that the growth process of organoid undergoes morphological changes such as volume growth, cavity creation and fusion, and quantitative calculation of the volume demonstrates that the growth rate of organoid is associated with the initial scale. The new method we proposed enable the study of growth, structural evolution and heterogeneity for the organoid cluster, which is valuable for drug screening and tumor drug sensitivity detection based on organoids.

11.
PLoS One ; 18(5): e0286257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228085

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high prevalence worldwide, with a significant proportion of patients progressing into non-alcoholic steatohepatitis (NASH) and further into cirrhosis and hepatocellular carcinoma (HCC). Most of the current animal models of NASH have limitations, such as incompatibility with human pathogenesis characteristics or long induction periods, which severely limit the development of new drugs and preclinical studies for NASH. We investigated the progression of NASH and fibrosis, as well as metabolic indicators, at different time points in aged mice induced by the Gubra Amylin NASH (GAN) diet, a high-fat, high-sugar, high-cholesterol diet, and attempted to establish a rapid and useful mouse model of NASH. Young and aged C57BL/6 mice were induced on a normal chow or GAN diet for 12 and 21 weeks, respectively. After 12 weeks of induction, aged mice developed NASH, including hepatic steatosis, lobular inflammation and hepatic ballooning, and the phenotype was more severe compared with young mice. After 21 weeks of induction, aged mice developed hepatic fibrosis, which greatly shortened the induction time compared with young mice. Furthermore, analysis of immune cell infiltration in the liver by flow cytometry elucidated the changes of multiple immune cells during the pathogenesis of NASH. These findings suggest that aged mice may develop NASH and fibrosis more rapidly under GAN diet induction, which may significantly shorten the period for preclinical studies of NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Idoso , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos
12.
Int Immunopharmacol ; 116: 109704, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689847

RESUMO

Over the last few years, immunotherapy has made significant progress in treating various cancers with therapeutic antibodies. However, therapeutic antibodies have been validated for inducing an unintended immune response in human and animal models, which leads to the emergence of anti-drug antibodies (ADAs) and affects their effectiveness and safety. In preclinical research, ADAs production by B cells may accelerate antibody metabolism and result in missing potential candidate molecules. Thus, it is urgent to develop preclinical models that remove only B cells without affecting the function of T and NK cells. Rearrangement of immunoglobulin heavy chain J gene fragment (Igh-J) is the first link in B cell development, and immunotherapies are currently leaning toward combination treatments with PD-1/PD-L1 antibodies, here we created humanized PD-1, PD-L1 and Igh-J knockout (hPD-1/hPD-L1, Igh-J KO) mice and validated by using the reported high immunogenicity drug M7824 (a protein designed to simultaneously block PD-L1 and TGF-ß pathways, poorly anti-tumor efficacy in immunocompetent mice). Phenotypic analysis revealed that human PD-1 and PD-L1 were detectable in hPD-1/hPD-L1, Igh-J KO mice, but not mouse IgM and IgD. Igh-J KO depleted B cells while increased the percentage of other immune cell types. Meanwhile, the humanization of PD-1/PD-L1 and Igh-J KO had neither effect on the overall development, differentiation, or distribution of T cell subtypes, nor on the activation of NK and T cells, indicating that mice can be used for T and NK-related immunotherapies. Furthermore, M7824 treatment of these B cell-deficient mice inhibited tumor growth significantly, with higher M7824 analog concentrations and lower ADA-positive rates. These findings demonstrate that Igh-J KO mice are an effective and stable preclinical model for testing drugs based on T and NK cells with high immunogenicity in vivo.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Camundongos , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos Monoclonais/farmacologia , Edição de Genes , Linfócitos T , Modelos Animais de Doenças
13.
Invest New Drugs ; 41(1): 53-59, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36409435

RESUMO

In this phase 1 open-label study, we assessed the relative bioavailability of a prototype tablet formulation of TAK-931, a cell division cycle 7 kinase inhibitor, in reference to the current powder-in-capsule (PIC) formulation in patients with advanced solid tumors for whom no effective standard treatment was available. Adult patients were randomized 1:1 in a crossover fashion to receive one dose of TAK-931 80 mg PIC on Day 1 and one dose of TAK-931 80 mg tablet on Day 3 (or the reverse sequence), followed by TAK-931 50 mg PIC once daily (QD) for 12 days starting from Day 5, before a 7-day rest period (Cycle 0). From Cycle 1, all patients received 50 mg PIC QD on Days 1-14 followed by a 7-day rest period. Twenty patients were enrolled. Median Tmax was achieved approximately 2 h post-dose of TAK-931 80 mg for both tablet and PIC. Geometric mean Cmax, AUC exposures, and T1/2z of TAK-931 were similar for both formulations. Geometric mean Cmax, AUClast, and AUCinf ratios were 0.936 (90% confidence interval [CI]: 0.808-1.084), 1.004 (90% CI: 0.899-1.120), and 1.007 (90% CI: 0.903-1.123), respectively, for TAK-931 tablet in reference to PIC. Discontinuation of TAK-931 due to treatment-emergent adverse events (TEAEs) occurred in 1 patient. Four (20%) patients experienced a serious TEAE; none were considered related to TAK-931. Pharmacokinetics and systemic exposure profiles were similar following administration of both formulations, supporting the transition from PIC to tablet in the clinical development of TAK-931. (Trial registration number ClinicalTrials.gov NCT03708211. Registration date October 12, 2018).


Assuntos
Neoplasias , Adulto , Humanos , Disponibilidade Biológica , Pós/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Comprimidos/uso terapêutico , Estudos Cross-Over , Área Sob a Curva , Administração Oral , Equivalência Terapêutica
14.
Clin Pharmacol Drug Dev ; 12(3): 257-266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382849

RESUMO

The purpose of this study was to assess the effect of pevonedistat, a neural precursor cell expressed, developmentally down-regulated protein 8 (NEDD8)-activating enzyme inhibitor, on the heart rate-corrected QT (QTc) interval in cancer patients. Patients were randomized 1:1 to receive pevonedistat 25 or 50 mg/m2 on day 1 and the alternate dose on day 8. Triplicate electrocardiograms were collected at intervals over 0-11 hours and at 24 hours via Holter recorders on days -1 (baseline), 1, and 8. Changes from time-matched baseline values were calculated for QTc by Fridericia (QTcF), PR, and QRS intervals. Serial time-matched blood samples for analysis of pevonedistat plasma pharmacokinetics were collected and a concentration-QTc analysis conducted. Safety was assessed by monitoring vital signs, physical examinations, and clinical laboratory tests. Forty-four patients were included in the QTc analysis. Maximum least square (LS) mean increase from time-matched baseline in QTcF was 3.2 milliseconds at 1 hour postdose for pevonedistat at 25 mg/m2 , while the LSs mean change from baseline in QTcF was -1.7 milliseconds 1 hour postdose at 50 mg/m2 . The maximum 2-sided 90% upper confidence bound was 6.7 and 2.9 milliseconds for pevonedistat at 25 and 50 mg/m2 , respectively. Pevonedistat did not result in clinically relevant effects on heart rate, nor on PR or QRS intervals. Results from pevonedistat concentration-QTc analysis were consistent with these findings. Administration of pevonedistat to cancer patients at a dose of up to 50 mg/m2 showed no evidence of QT prolongation, indicative of the lack of clinically meaningful effects on cardiac repolarization. ClinicalTrials.gov identifier: NCT03330106 (first registered on November 6, 2017).


Assuntos
Eletrocardiografia , Neoplasias , Humanos , Coração , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores Enzimáticos , Proteína NEDD8
15.
Nat Commun ; 13(1): 5506, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127339

RESUMO

Chemoresistance limits its clinical implementation for pancreatic ductal adenocarcinoma (PDAC). We previously generated an EGFR/HER2 targeted conjugate, dual-targeting ligand-based lidamycin (DTLL), which shows a highly potent antitumor effect. To overcome chemoresistance in PDAC, we aim to study DTLL efficacy when combined with gemcitabine and explore its mechanisms of action. DTLL in combination with gemcitabine show a superior inhibitory effect on the growth of gemcitabine-resistant/sensitive tumors. DTLL sensitizes gemcitabine efficacy via distinct action mechanisms mediated by mothers against decapentaplegic homolog 4 (SMAD4). It not only prevents neoplastic proliferation via ATK/mTOR blockade and NF-κB impaired function in SMAD4-sufficient PDACs, but also restores SMAD4 bioactivity to trigger downstream NF-κB-regulated signaling in SMAD4-deficient tumors and to overcome chemoresistance. DTLL seems to act as a SMAD4 module that normalizes its function in PDAC, having a synergistic effect in combination with gemcitabine. Our findings provide insight into a rational SMAD4-directed precision therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Aminoglicosídeos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Enedi-Inos , Receptores ErbB , Humanos , Ligantes , NF-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proteína Smad4/genética , Serina-Treonina Quinases TOR , Gencitabina , Neoplasias Pancreáticas
16.
Invest New Drugs ; 40(5): 1042-1050, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932388

RESUMO

Pevonedistat (TAK-924/MLN4924) is an investigational small molecule inhibitor of the NEDD8-activating enzyme that has demonstrated clinical activity across solid tumors and hematological malignancies. Here we report the results of a phase 1 study evaluating the effect of rifampin, a strong CYP3A inducer, on the pharmacokinetics (PK) of pevonedistat in patients with advanced solid tumors (NCT03486314). Patients received a single 50 mg/m2 pevonedistat dose via a 1-h infusion on Days 1 (in the absence of rifampin) and 10 (in the presence of rifampin), and daily oral dosing of rifampin 600 mg on Days 3-11. Twenty patients were enrolled and were evaluable for PK and safety. Following a single dose of pevonedistat at 50 mg/m2, the mean terminal half-life of pevonedistat was 5.7 and 7.4 h in the presence and in the absence of rifampin, respectively. The geometric mean AUC0-inf of pevonedistat in the presence of rifampin was 79% of that without rifampin (90% CI: 69.2%-90.2%). The geometric mean Cmax of pevonedistat in the presence of rifampin was similar to that in the absence of rifampin (96.2%; 90% CI: 79.2%-117%). Coadministration of pevonedistat with rifampin, a strong metabolic enzyme inducer, did not result in clinically meaningful decreases in systemic exposures of pevonedistat. The study results support the recommendation that no pevonedistat dose adjustment is needed for patients receiving concomitant CYP3A inducers. CLINICALTRIALS.GOV IDENTIFIER: NCT03486314.


Assuntos
Neoplasias , Rifampina , Área Sob a Curva , Ciclopentanos , Interações Medicamentosas , Inibidores Enzimáticos/farmacocinética , Humanos , Proteína NEDD8 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirimidinas/efeitos adversos , Rifampina/farmacologia , Rifampina/uso terapêutico
17.
J Agric Food Chem ; 70(33): 10182-10193, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35950815

RESUMO

Hyperuricemia is an independent hazard factor of renal injury and can induce renal fibrosis, promoting the development of chronic kidney disease (CKD). This study aimed to explore the probability of chlorogenic acid (CGA) as a potential substance for preventing hyperuricemia nephropathy (HN). Pretreatment with CGA downregulated SUA, BUN, and CR levels, relieved oxidative stress and inflammatory response, alleviated kidney fibrosis, and contributed to the prevention of HN. In the gut microbiota, Blautia, Enterococcus, and Faecalibaculum related to trimethylamine N-oxide (TMAO) synthesis were significantly increased in HN rats. In addition, it showed a significant increase in serum TMAO content in HN rats. However, CGA regulated the cascade response of the microbiota-TMAO signaling to reverse the increase of serum TMAO. CGA also decreased the protein expression of protein kinase B (AKT) phosphorylation, phosphatidylinositide 3-kinase (PI3K), and mammalian target of rapamycin (mTOR) by reducing the production of TMAO. CGA delayed kidney fibrosis in HN rats as evidenced by regulating the cascade response of the microbiota-TMAO-PI3K/AKT/mTOR signaling pathway. In summary, CGA can be an excellent candidate for HN prevention.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Insuficiência Renal Crônica , Animais , Ácido Clorogênico , Fibrose , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/genética , Mamíferos/metabolismo , Metilaminas/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Insuficiência Renal Crônica/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Úrico
18.
Nat Cell Biol ; 24(7): 1165-1176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773432

RESUMO

CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Proteínas de Membrana , Fatores de Transcrição NFATC/genética , Neoplasias/genética , Infecção Persistente , Fatores de Transcrição
19.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733256

RESUMO

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Sumoilação , Animais , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Sumoilação/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
J Hematol Oncol ; 15(1): 56, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545778

RESUMO

Pevonedistat, the first small-molecule inhibitor of NEDD8-activating enzyme, has demonstrated clinical activity in Western patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). We report findings from a phase 1/1b study in East Asian patients with AML or MDS, conducted to evaluate the safety/tolerability and characterize the pharmacokinetics of pevonedistat, alone or in combination with azacitidine, in this population, and determine the recommended phase 2/3 dose for pevonedistat plus azacitidine. Twenty-three adult patients with very high/high/intermediate-risk AML or MDS were enrolled in Japan, South Korea and Taiwan. All 23 patients experienced at least one grade ≥ 3 treatment-emergent adverse event. One patient in the combination cohort reported a dose-limiting toxicity. Eighteen patients discontinued treatment; in nine patients, discontinuation was due to progressive disease. Three patients died on study of causes considered unrelated to study drugs. Pevonedistat exhibited linear pharmacokinetics over the dose range of 10-44 mg/m2, with minimal accumulation following multiple-dose administration. An objective response was achieved by 5/11 (45%) response-evaluable patients in the pevonedistat plus azacitidine arm (all with AML), and 0 in the single-agent pevonedistat arm. This study showed that the pharmacokinetic and safety profiles of pevonedistat plus azacitidine in East Asian patients were similar to those observed in Western patients as previously reported. The recommended Phase 2/3 dose (RP2/3D) of pevonedistat was determined to be 20 mg/m2 for co-administration with azacitidine 75 mg/m2 in Phase 2/3 studies, which was identical to the RP2/3D established in Western patients.Trial registration: clinicaltrials.gov: NCT02782468 25 May 2016. https://clinicaltrials.gov/ct2/show/NCT02782468.


Assuntos
Ciclopentanos , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Pirimidinas , Adulto , Azacitidina/uso terapêutico , Ciclopentanos/efeitos adversos , Ciclopentanos/farmacocinética , Quimioterapia Combinada/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA