Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int Endod J ; 57(5): 549-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332717

RESUMO

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Assuntos
Polpa Dentária , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinases , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Regeneração , Células-Tronco/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421461

RESUMO

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Assuntos
Candida albicans , Células Epiteliais , Virulência , Candida albicans/genética , Ergosterol , Imunoglobulina A Secretora
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 31-38, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322519

RESUMO

Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor ß (TGF-ß) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacologia , Osso e Ossos/metabolismo , Transdução de Sinais , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Ligante RANK/farmacologia
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 53-59, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322539

RESUMO

Objective: To investigate the effects of stromal cell-derived factor 1α (SDF-1α) on the apoptosis and autophagy of chondrocytes and the underlying mechanisms. Methods: Chondrocytes were isolated from the knee joints of neonatal mice. The chondrocytes were then stimulated with 0 (the control group), 50, 100, and 200 ng/mL of SDF-1α. CCK-8 assay was performed to determine the effects of SDF-1α stimulation for 24 h, 48 h, and 72 h on the viability of the chondrocytes. Wound healing assay was conducted to determine the effects of SDF-1α stimulation for 12 h and 24 h on chondrocyte migration. The changes in the expression of Akt signaling pathway proteins in chondrocytes were determined by Western blot assay. Chondrocytes were stimulated with 0 (the control group) and 200 ng/mL of SDF-1α. Flow cytometry was performed to determine the effect of SDF-1α on the apoptosis of chondrocytes. Transmission electron microscope was used to examine the effect of SDF-1α on chondrocyte autophagy. Immunofluorescence staining assays were performed to visualize the differences in p-Akt expression and distribution in chondrocytes treated with SDF-1α. Results: Compared with the control group, findings for the experimental groups showed that SDF-1α at the concentrations of 50, 100, and 200 ng/mL did not decrease chondrocyte activity at any time point (P<0.01) and it consistently promoted chondrocyte migration at 24 h (P<0.05). Western blot results revealed that, in comparison to the control group, SDF-1α at concentrations of 50, 100, and 200 ng/mL significantly up-regulated the protein expression of p-Akt in chondrocytes, while no significant difference in Akt expression was observed. Flow cytometry demonstrated that SDF-1α could inhibit chondrocyte apoptosis (P<0.05) and transmission electron microscopic observation showed that SDF-1α promoted chondrocyte autophagy (P<0.05). Immunofluorescence staining showed that the expression of p-Akt in chondrocytes was concentrated in the perinuclear area of the cells and this expression was further enhanced in the perinuclear area of the chondrocytes after treatment with SDF-1α. Conclusion: SDF-1α inhibits chondrocyte apoptosis and promotes chondrocyte migration and autophagy through activating the Akt signaling pathway.


Assuntos
Apoptose , Autofagia , Quimiocina CXCL12 , Condrócitos , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
J Histotechnol ; : 1-11, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966852

RESUMO

With rates growing quickly with age, osteoarthritis (OA) is the most common cause of chronic disability in aging persons. The discomfort and reduced motion associated with osteoarthritis have a significant impact on quality of life, and there is no known solution. Runt-related transcription factor 1(Runx1) has been shown to play a protective role in the development of osteoarthritis by promoting chondrogenesis. We had created models of ageing mice with osteoarthritis by anterior cruciate ligament transection (ACLT) and analyzed the effects of intra-articular injection of adeno-associated virus/Runx1 (AAV/Runx1) on the models. The results showed that the AAV/Runx1-group maintained better articular cartilage integrity and retained more proteoglycan than the OA group after injection of AAV-Runx1. The markers related to pathological changes in cartilage were downregulated, while the markers related to physiological changes in cartilage were upregulated. This suggests that Runx1 may impede OA progression on the knee joint of ageing mice, potentially playing a protective role in OA and becoming a probable treatment target for osteoarthritis among ageing patients in the future.

6.
Int J Oral Sci ; 15(1): 43, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723147

RESUMO

The dental operative microscope has been widely employed in the field of dentistry, particularly in endodontics and operative dentistry, resulting in significant advancements in the effectiveness of root canal therapy, endodontic surgery, and dental restoration. However, the improper use of this microscope continues to be common in clinical settings, primarily due to operators' insufficient understanding and proficiency in both the features and established operating procedures of this equipment. In October 2019, Professor Jingping Liang, Vice Chairman of the Society of Cariology and Endodontology, Chinese Stomatological Association, organized a consensus meeting with Chinese experts in endodontics and operative dentistry. The objective of this meeting was to establish a standard operation procedure for the dental operative microscope. Subsequently, a consensus was reached and officially issued. Over the span of about four years, the content of this consensus has been further developed and improved through practical experience.


Assuntos
Dentística Operatória , Endodontia , Humanos , Consenso , Tratamento do Canal Radicular , Assistência Odontológica
7.
BMC Cancer ; 23(1): 668, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460940

RESUMO

BACKGROUND: Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS: The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS: The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of ß-catenin and its downstream gene through targeting PLCD1. CONCLUSION: MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/ß-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética , Humanos
8.
Microbiol Spectr ; 11(4): e0132223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37310225

RESUMO

Radiation caries is one of the most common complications of head and neck radiotherapy. A shift in the oral microbiota is the main factor of radiation caries. A new form of biosafe radiation, heavy ion radiation, is increasingly being applied in clinical treatment due to its superior depth-dose distribution and biological effects. However, how heavy ion radiation directly impacts the oral microbiota and the progress of radiation caries are unknown. Here, unstimulated saliva samples from both healthy and caries volunteers and caries-related bacteria were directly exposed to therapeutic doses of heavy ion radiation to determine the effects of radiation on oral microbiota composition and bacterial cariogenicity. Heavy ion radiation significantly decreased the richness and diversity of oral microbiota from both healthy and caries volunteers, and a higher percentage of Streptococcus was detected in radiation groups. In addition, heavy ion radiation significantly enhanced the cariogenicity of saliva-derived biofilms, including the ratios of the genus Streptococcus and biofilm formation. In the Streptococcus mutans-Streptococcus sanguinis dual-species biofilms, heavy ion radiation increased the ratio of S. mutans. Next, S. mutans was directly exposed to heavy ions, and the radiation significantly upregulated the gtfC and gtfD cariogenic virulence genes to enhance the biofilm formation and exopolysaccharides synthesis of S. mutans. Our study demonstrated, for the first time, that direct exposure to heavy ion radiation can disrupt the oral microbial diversity and balance of dual-species biofilms by increasing the virulence of S. mutans, increasing its cariogenicity, indicating a potential correlation between heavy ions and radiation caries. IMPORTANCE The oral microbiome is crucial to understanding the pathogenesis of radiation caries. Although heavy ion radiation has been used to treat head and neck cancers in some proton therapy centers, its correlation with dental caries, especially its direct effects on the oral microbiome and cariogenic pathogens, has not been reported previously. Here, we showed that the heavy ion radiation directly shifted the oral microbiota from a balanced state to a caries-associated state by increasing the cariogenic virulence of S. mutans. Our study highlighted the direct effect of heavy ion radiation on oral microbiota and the cariogenicity of oral microbes for the first time.


Assuntos
Cárie Dentária , Íons Pesados , Microbiota , Humanos , Streptococcus mutans , Streptococcus , Streptococcus sanguis , Biofilmes
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 462-468, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248569

RESUMO

Saliva, a complex mixed biological fluid secreted by the salivary glands in the oral cavity, contains a wide variety of substances and information. With the development of saliva omics, studies have shown that saliva not only serves as a huge reservoir of biomarker, but saliva diagnostics has also become a new diagnostic technology with the advantages of non-invasiveness, easy access, and low cost. However, finding "true" saliva biomarkers is still a challenge due to the complex and changeable nature of the oral environment and the high susceptibility of biomarker content to influences. Herein, mainly focusing on potential salivary biomarkers of common tumors, including DNA, RNA, proteins, metabolites and microorganisms, we gave a systematic overview of the biomarkers that had been identified so far or the associated biomarkers. We suggested that the future development direction should be the establishment of a multidisciplinary system for developing saliva diagnosis technology, the gradual construction of a saliva diagnosis platform, and the search for more precise pre-warning tumor biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores , Saliva/metabolismo , Proteínas
10.
J Periodontal Res ; 58(4): 697-707, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37143211

RESUMO

BACKGROUND AND OBJECTIVE: Periodontitis is a chronic inflammatory disease involving soft and hard tissue destruction in the periodontal region. Cannabidiol (CBD) is a natural compound isolated from cannabis, which has the effect of inhibiting inflammation. However, the role of CBD in periodontitis remains unclear. The aim of this study was to investigate the anti-inflammatory effects and osteoprotective actions of CBD in periodontitis and its molecular mechanisms. MATERIALS AND METHODS: After establishing the rat periodontitis model by ligatures, the specimens were processed for morphometric analysis by Micro-CT. The gingival tissues were collected, and the levels of TNF-α, IL-1ß, and TLR4 were measured by enzyme-linked immunosorbent assay. LPS was used to induce the inflammatory response of human periodontal ligament cells (hPDLCs) in vitro. QPCR and western blot were carried out to detect the expression of related inflammatory cytokines and signaling pathways. RESULTS: Cannabidiol significantly inhibits bone loss in experimental rat periodontitis models. CBD downregulated the pro-inflammatory mediator TNF-α, related to the decrease of TLR4 protein expression. Overexpression of TNF-α and TLR4 caused by LPS in hPDLCs. CBD inactivated the TLR4/NF-κB signaling pathway by inhibiting TLR-4 expression and p65 NF-κB phosphorylation. CBD can be considered as a therapeutic agent for periodontitis. CONCLUSION: Our study demonstrated that CBD attenuates ligature-induced periodontitis in rats and LPS-induced inflammation in hPDLCs by inhibiting TLR4/NF-κB pathway activation. It indicates that topical CBD application is effective in treating periodontitis.


Assuntos
Canabidiol , Periodontite , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 334-341, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-36949695

RESUMO

The taste buds in the human tongue contain specialized cells that generate taste signals when they are stimulated. These signals are then transmitted to the central nervous system, allowing the human body to distinguish nutritious substances from toxic or harmful ones. This process is critical to the survival of humans and other mammals. A number of studies have shown that dysgeusia, or taste disorder, is a common complication of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which can severely affect patients' nutritional intake and quality of life. Based on the physiological process of taste perception, the direct causes of dysgeusia include dysfunction of taste receptors and damage to the taste nervous system, while indirect causes include genetic factors, aging-related changes, bacterial and viral infections, and cancer treatments such as radiotherapy and chemotherapy. The pathogenic factors of dysgeusia are complicated, further research is needed to fully understand the underlying mechanisms, and some of the reported findings and conclusions still need further validation. All these form a great challenge for clinical diagnosis of the cause and targeted treatment of dysgeusia. Herein, we reviewed published research on the physiological process of taste perception, the potential mechanisms of taste disorders related to SARS-CoV-2 infection, and strategies for prevention and treatment, providing theoretical support for establishing and improving the comprehensive management of COVID-19 complicated by taste disorders.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , COVID-19/complicações , Disgeusia/etiologia , Disgeusia/terapia , Percepção Gustatória , SARS-CoV-2 , Paladar/fisiologia , Qualidade de Vida , Olfato , Transtornos do Olfato/complicações , Distúrbios do Paladar/terapia , Distúrbios do Paladar/complicações
12.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675225

RESUMO

SDF-1α, the most common isoform of stromal cell-derived factor 1, has shown vital effects in regulating chondrocyte proliferation, maturation, and chondrogenesis. Autophagy is a highly conserved biological process to help chondrocytes survive in harsh environments. However, the effect of SDF-1α on chondrocyte autophagy is still unknown. This study aims to investigate the effect of SDF-1α on chondrocyte autophagy and the underlying biomechanism. Transmission electron microscope assays and mRFP-GFP-LC3 adenovirus double label transfection assays were performed to detect the autophagic flux of chondrocytes. Western blots and immunofluorescence staining assays were used to detect the expression of autophagy-related proteins in chondrocytes. RNA sequencing and qPCR were conducted to assess changes in autophagy-related mRNA expression. SDF-1α upregulated the number of autophagosomes and autolysosomes in chondrocytes. It also increased the expression of autophagy-related proteins including ULK-1, Beclin-1 and LC3B, and decreased the expression of p62, an autophagy substrate protein. SDF-1α-mediated autophagy of chondrocytes required the participation of receptor CXCR4. Moreover, SDF-1α-enhanced autophagy of chondrocytes was through the inhibition of phosphorylation of mTOR signaling on the upstream of autophagy. Knockdown by siRNA and inhibition by signaling inhibitor further confirmed the importance of the CXCR4/mTOR signaling axis in SDF-1α-induced autophagy of chondrocytes. For the first time, this study elucidated that SDF-1α promotes chondrocyte autophagy through the CXCR4/mTOR signaling axis.


Assuntos
Quimiocina CXCL12 , Condrócitos , Condrócitos/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptores CXCR4/metabolismo , Autofagia/genética
13.
Mol Oral Microbiol ; 38(1): 9-22, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420924

RESUMO

Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.


Assuntos
Carcinoma de Células Escamosas , Microbiota , Neoplasias Bucais , Humanos , Neoplasias Bucais/complicações , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Carcinogênese , Fusobacterium nucleatum , Porphyromonas gingivalis , Microambiente Tumoral
14.
Oral Dis ; 29(3): 1184-1196, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34874590

RESUMO

OBJECTIVES: The objectives of this study were to explore the role and related mechanism of berberine in repairing bone destruction in apical periodontics (AP). MATERIALS AND METHODS: AP was established in 14 of 21 male Wistar rats (four weeks of age; 70-80 g) for 3 weeks. The canals were cleaned and administered berberine (2 mg/ml; n = 7) or calcium hydroxide (100 mg/ml; control; n = 7), followed by glass ionomer cement sealing. After 3 weeks, specimen collection followed by micro-computed tomography (µ-CT) and histological staining was performed, including haematoxylin and eosin staining, Masson's trichrome staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and immunofluorescence histochemistry. RESULTS: µ-CT showed that AP lesion volume reduced in the berberine group. Histopathology showed that berberine decreased the activity and number of osteoclasts but increased the expression of proteins related to osteoblast differentiation, including alkaline phosphatase and osterix. The immune cell, T cell, dendritic cell and macrophage counts were significantly decreased in the berberine group. In the berberine group, the expression of extracellular matrix-degraded proteases, metalloproteinases, was decreased; however, that of extracellular matrix-stable proteases, lysyl oxidases, was increased. CONCLUSIONS: Berberine controlled the inflammatory response and regulated bone metabolism in AP by reducing metalloproteinase expression and increasing lysyl oxidases expression.


Assuntos
Berberina , Periodontite Periapical , Ratos , Animais , Masculino , Berberina/farmacologia , Ratos Wistar , Microtomografia por Raio-X , Periodontite Periapical/metabolismo , Osteoclastos/patologia , Matriz Extracelular/metabolismo , Oxirredutases
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1294-1299, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38162082

RESUMO

Ferroptosis, a newly-discovered mode of programmed cell death, is closely associated with the development of various diseases throughout the human body, such as tumors of the digestive system, ischemia-reperfusion injury, osteoarthropathy, etc. Therefore, ferroptosis has become a hot research topic in many fields of study in recent years, providing new ideas for the prevention and treatment of relevant diseases. Among them, structural lesions in osteoarthropathies involving articular cartilage, subchondral bone, and synovial tissue have been found to be associated with iron overload, as well as oxidative stress, which suggests that inhibition of ferroptosis in relevant joint tissue cells may have a positive effect in halting the development of osteoarthropathy. Herein, focusing on ferroptosis and osteoarthropathy, we summarized the research developments in mechanisms related to iron metabolism and ferroptosis, analyzed the impact of ferroptosis on the pathogenesis and development of osteoarthropathy, and proposed new ideas for medication therapies of osteoarthropathy, taking into account the latest research findings.


Assuntos
Cartilagem Articular , Ferroptose , Traumatismo por Reperfusão , Humanos , Apoptose , Estresse Oxidativo
16.
Biomolecules ; 12(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551165

RESUMO

Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.


Assuntos
Células-Tronco Mesenquimais , Periodontite Periapical , Dente , Humanos , Periodontite Periapical/terapia , Periodonto , Células-Tronco Mesenquimais/fisiologia , Inflamação
17.
Front Cell Infect Microbiol ; 12: 1013920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530430

RESUMO

Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with a poor prognosis. There is an urgent need to develop a simple and convenient screening tool for early detection and risk screening of NPC. 139 microbial samples were collected from 40 healthy people and 39 patients with nasopharyngeal biopsy. A total of 40 and 39 oral, eight and 27 nasal cavity, nine and 16 nasopharyngeal microbial samples were collected from the two sets of individuals. A risk screening tool for NPC was established by 16S rDNA sequencing and random forest. Patients with nasopharyngeal biopsy had significantly lower nasal cavity and nasopharynx microbial diversities than healthy people. The beta diversity of the oral microbiome was significantly different between the two groups. The NPC screening tools based on nasopharyngeal and oral microbiomes have 88% and 77.2% accuracies, respectively. The nasopharyngeal biopsy patients had significantly higher Granulicatella abundance in their oral cavity and lower Pseudomonas and Acinetobacter in the nasopharynx than healthy people. This study established microbiome-based non-invasive, simple, no radiation, and low-cost NPC screening tools. Individuals at a high risk of NPC should be advised to seek further examination, which might improve the early detection of NPC and save public health costs.


Assuntos
Microbiota , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Herpesvirus Humano 4/genética , DNA Viral/genética , Nasofaringe , Microbiota/genética
18.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484118

RESUMO

Taste perception, initiated by activation of taste receptors in taste bud cells, is crucial for regulating nutrient intake. Genetic polymorphisms in taste receptor genes cannot fully explain the wide individual variations of taste sensitivity. Alternative splicing (AS) is a ubiquitous posttranscriptional mode of gene regulation that enriches the functional diversity of proteins. Here, we report the identification of a novel splicing variant of sweet taste receptor gene Tas1r2 (Tas1r2_∆e4) in mouse taste buds and the mechanism by which it diminishes sweet taste responses in vitro and in vivo. Skipping of Tas1r2 exon 4 in Tas1r2_∆e4 led to loss of amino acids in the extracellular Venus flytrap domain, and the truncated isoform reduced the response of sweet taste receptors (STRs) to all sweet compounds tested by generating nonfunctional T1R2/T1R3 STR heterodimers. The splicing factor PTBP1 (polypyrimidine tract-binding protein 1) promoted Tas1r2_∆e4 generation through binding to a polypyrimidine-rich splicing silencer in Tas1r2 exon 4, thus decreasing STR function and sweet taste perception in mice. Taken together, these data reveal the existence of a regulated AS event in Tas1r2 expression and its effect on sweet taste perception, providing a novel mechanism for modulating taste sensitivity at the posttranscriptional level.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Percepção Gustatória , Camundongos , Animais , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética
19.
Front Immunol ; 13: 1065004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505435

RESUMO

Background: Microbiome dysbiosis is considered a predictive biomarker of clinical response in renal cell carcinoma (RCC), which can be regulated by antibiotics (ATB). Multiple studies have shown that concomitant ATB administration has inhibitory effects on immunotherapy in RCC. This review aimed to assess the impact of ATB on patient survival and tumor response in RCC with immunotherapy. Methods: Literature evaluating the effect of ATB on immunotherapy in RCC from Cochrane Library®, PubMed®, Embase®, Scopus®, and Web of Science® were systematically searched. Hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS), odds ratio (OR) for objective response rate (ORR) and primary progressive disease (PD) were pooled as effect sizes for clinical outcomes. Subgroup analysis was conducted to reveal the determinants of the effect of ATB on immunotherapy, including time windows of ATB exposure to immunotherapy initiation, ICIs treatment and study location. The leave-one-out approach was adopted to analyze the heterogeneity formulated. Cumulative meta-analysis adding by time was used to observe dynamic changes of the results. Results: Ten studies were included in the systematic review and six studies (with n=1,104 patients) were included in the meta-analysis, four studies were excluded for overlapping patients with subsequent larger studies and lack of unique patient-level data. ATB administration was significantly correlated with shorter PFS (HR=2.10, 95%CI [1.54; 2.85], I2 = 2% after omitting study Derosa et al, 2021 detected by leave-one-out approach), shorter OS (HR=1.69, 95%CI [1.34; 2.12], I2 = 25%) and worse ORR (OR=0.58, 95%CI [0.41; 0.84]), but no difference was observed in risk of PD (OR=1.18, 95%CI [0.97; 1.44]). No significant differences existed among the subgroups for determining the determinants of ATB inhibition. Conclusions: Concomitant ATB with immunotherapy was associated with worse PFS, OS and ORR in RCC. No publication bias was observed in this study. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=349577, identifier CRD42022349577.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Antibacterianos/efeitos adversos , Imunoterapia/efeitos adversos , Intervalo Livre de Progressão , Neoplasias Renais/tratamento farmacológico
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1098-1103, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36443059

RESUMO

Cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) is a newly-discovered second messenger in bacteria and archaea. By directly binding to or affecting the expression of target proteins, c-di-AMP regulates the physiological functions of bacteria, including maintaining osmotic pressure, balancing central metabolism, monitoring DNA damage, and controlling biofilm and spore formation. As a new pathogen-associated molecular pattern (PAMP), it binds to the host pattern recognition receptor (PRR), induces cyclic GMP-AMP synthase (cGAS)-STING signal axis to produce type Ⅰ interferon by activating the stimulator of interferon genes (STING), and promotes the secretion of inflammatory factors through nuclear factor κB (NF-κB) signaling pathway, thereby playing an important role in host immunity to bacterial infection and tumorigenesis. Due to its immunogenicity, c-di-AMP could be used as an immune adjuvant to provide new targets for the development of vaccines. However, the specific mechanism of action of c-di-AMP in host immunity awaits further exploration. Herein, we presented the structure and biological characteristics of c-di-AMP, and summarized the possible mechanism of c-di-AMP's regulation of host immune response. In addition, we also reported the latest findings on using c-di-AMP as an immune adjuvant in clinical treatment. Research on the function of c-di-AMP and its mechanism of action on host immune response provides new ideas for finding clinical solutions to bacterial resistance, infection control, tumor prevention, and vaccine development in the future.


Assuntos
Bactérias , Fosfatos de Dinucleosídeos , Biofilmes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA