Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; 49(7): 1739-1756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34461812

RESUMO

Although the protective effect of ginsenoside on cisplatin-induced renal injury has been extensively studied, whether ginsenoside interferes with the antitumor effect of cisplatin has not been confirmed. In this paper, we verified the main molecular mechanism of 20(R)-ginsenoside Rg3 (R-Rg3) antagonizing cisplatin-induced acute kidney injury (AKI) through the combination of in vivo and in vitro models. It is worth mentioning that the two cell models of HK-2 and HepG2 were used simultaneously for the first time to explore the effect of the activation site of tumor-associated protein p53 on apoptosis and tumor suppression. The results showed that a single injection of cisplatin (20 mg/kg) led to weight loss, the kidney index of the mice increased, and creatinine (CRE) and blood urea nitrogen (BUN) levels in mice sharply increased. Continuous administration of R-Rg3 at doses of 10 and 20 mg/kg for 10 days could significantly alleviate this symptom. Similarly, R-Rg3 treatment reduced oxidative stress damage caused by cisplatin. Moreover, R-Rg3 could observably reduce the apoptosis and inflammatory infiltration of renal tubular cells induced by cisplatin. We used western blotting analysis to demonstrate that R-Rg3 restored cisplatin-induced AKI might be related to PI3K/AKT and NF-[Formula: see text]B mediated apoptosis and inflammation pathways. In the meantime, we also verified that R-Rg3 could activate different sites of p53 to control renal cell apoptosis induced by cisplatin without affecting its antitumor effect.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Ginsenosídeos/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos
2.
Phytother Res ; 35(8): 4411-4424, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34028092

RESUMO

Successive evidence has established that maltol, a flavor-enhancing agent, could provide resistance to oxidative stress-induced tissue injury in various animal models though its benefits for aging-induced liver and kidney injuries are still undetermined. In the present work, for demonstrating maltol's ameliorative effect and probable mechanism against aging-induced liver and kidney injuries, D-galactose (D-Gal)-induced animal in vivo and HEK293 cells in vitro models were established and results demonstrated that long-term D-Gal treatment increases the accumulation of advanced glycation end products (AGEs) in liver and kidney tissues, mitigates cell viability, and arrests the cycle. Interestingly, 4-weeks maltol treatment at 50 and 100 mg/kg activated aging-associated proteins including p53, p21, and p16 followed by inhibiting malondialdehyde (MDA)'s over-production and increasing the levels of antioxidant enzymes. Therefore, decreases in cytochrome P450 E1 (CYP2E1) and 4-hydroxydecene (4-HNE)'s immunofluorescence expression levels are confirmed. Furthermore, maltol improved oxidative stress injury by activating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. In conclusion, the purpose of the present study was to estimate the mechanistic insights into maltol's role as an antioxidant in liver and kidney cell senescence and injury, which will reflect potential of therapeutic strategy for antiaging and aging-related disease treatment.


Assuntos
Galactose , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Envelhecimento , Animais , Galactose/efeitos adversos , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Am J Chin Med ; 48(5): 1141-1157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668974

RESUMO

Oxidative stress is considered as a major factor in aging and exacerbates aging process through a variety of molecular mechanisms. D-galactose, a normal reducing sugar with high dose can cause the accumulation of reactive oxygen species (ROS) or stimulate free radical production indirectly by the formation of advanced glycation end products in tissues, finally resulting in oxidative stress. 20(R)-ginsenoside Rg3 (20(R)-Rg3), a major and representative component isolated from red ginseng (Panax ginseng C.A Meyer), has been shown to observably have an anti-oxidative effect. We thereby investigated the beneficial effects of 20(R)-Rg3 on D-galactose-induced oxidative stress injury and its underlying mechanisms. Our results showed that continuous injection of D-galactose with 800[Formula: see text]mg/kg/day for 8 weeks increased the levels of alanine aminotransferase (ALT) and blood urea nitrogen (BUN). However, such increases were attenuated by the treatment of 20(R)-Rg3 for 4 weeks. Meanwhile, 20(R)-Rg3 markedly inhibited D-galactose-caused oxidative stress in liver and kidney. The anti-oxidants, including catalase (CAT) and superoxide dismutase (SOD), were elevated in the mice from 20(R)-Rg3-treated group compared with that from D-galactose group. In contrast, a significant decrease in levels of cytochrome P450 E1 (CYP2E1) and the lipid peroxidation product malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were observed in the 20(R)-Rg3-treated group. These effects were associated with a significant increase of AGEs. More importantly, 20(R)-Rg3 effectively attenuated D-galactose induced apoptosis in liver and kidney via restoring the upstream PI3K/AKT signaling pathway. Taken together, our study suggests that 20(R)-Rg3 may be a novel and promising anti-oxidative therapeutic agent to prevent aging-related injuries in liver and kidney.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Galactose/efeitos adversos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Fitoterapia , Animais , Antioxidantes , Modelos Animais de Doenças , Ginsenosídeos/isolamento & purificação , Produtos Finais de Glicação Avançada/metabolismo , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
J Agric Food Chem ; 67(37): 10342-10351, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461273

RESUMO

Maltol, a maillard reaction product from ginseng (Panax ginseng C. A. Meyer), has been confirmed to inhibit oxidative stress in several animal models. Its beneficial effect on oxidative stress related brain aging is still unclear. In this study, the mouse model of d-galactose (d-Gal)-induced brain aging was employed to investigate the therapeutic effects and potential mechanisms of maltol. Maltol treatment significantly restored memory impairment in mice as determined by the Morris water maze tests. Long-term d-Gal treatment reduced expression of cholinergic regulators, i.e., the cholineacetyltransferase (ChAT) (0.456 ± 0.10 vs 0.211 ± 0.03 U/mg prot), the acetylcholinesterase (AChE) (36.4 ± 5.21 vs 66.5 ± 9.96 U/g). Maltol treatment prevented the reduction of ChAT and AChE in the hippocampus. Maltol decreased oxidative stress levels by reducing levels of reactive oxygen species (ROS) and malondialdehyde (MDA) production in the brain and by elevating antioxidative enzymes. Furthermore, maltol treatment minimized oxidative stress by increasing the phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1). The above results clearly indicate that supplementation of maltol diminishes d-Gal-induced behavioral dysfunction and neurological deficits via activation of the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in brain. Maltol might become a potential drug to slow the brain aging process and stimulate endogenous antioxidant defense capacity. This study provides the novel evidence that maltol may slow age-associated brain aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Galactose/efeitos adversos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/administração & dosagem , Pironas/administração & dosagem , Envelhecimento/metabolismo , Animais , Heme Oxigenase-1/genética , Humanos , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Biomed Pharmacother ; 109: 2309-2317, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551489

RESUMO

Cisplatin, as an effective chemotherapeutic agent, is widely used to treat verious types of cancers. Nephrotoxicity induced by cisplatin seriously limits its clinical application. Icariin, a major and remarkable flavonoid isolated from Epimedium koreanum, has been reported to exert anti-oxidative stress and anti-inflammation actions. The purpose of this study is to explore the protective effect and possible mechanism of icariin on cisplatin-induced nephrotoxicity on HEK-293 cells. In this study, icariin pretreatment for 24 h significantly ameliorated cisplatin-induced oxidative stress by reducing levels of malondialdehyde (MDA) and reactive oxygen species (ROS), while increasing level of glutathione (GSH) in HEK-293 cells. Furthermore, icariin pretreatment reduced NF-κB phosphorylation and nuclear translocation in HEK-293 cells followed by decreased secretion of IL-1ß, TNF-α, and iNOS, suggesting a suppression of inflammatory response. Moreover, icariin pretreatment significantly reduced cellular apoptosis via reduced levels of Bax, cleaved caspase-3/9, and increased anti-apoptotic protein Bcl-2 in the cells. Importantly, LY294002, a specific PI3K inhibitor, abrogated the anti-apoptosis effect of icariin, implicating the involvement of PI3K/Akt pathway. In summary, icariin prevents cisplatin-induced HEK-293 cell injury by inhibiting oxidative stress, inflammatory response, and cellular apoptosis partly via regulating NF-κB and PI3K/Akt signaling pathways. Icariin may serve as a potential therapeutic target against cisplatin-induced nephrotoxicity.


Assuntos
Cisplatino/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Epimedium , Células HEK293 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores
6.
Molecules ; 23(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142916

RESUMO

The purpose of this research was to evaluate whether maltol could protect from hepatic injury induced by carbon tetrachloride (CCl4) in vivo by inhibition of apoptosis and inflammatory responses. In this work, maltol was administered at a level of 100 mg/kg for 15 days prior to exposure to a single injection of CCl4 (0.25%, i.p.). The results clearly indicated that the intrapulmonary injection of CCl4 resulted in a sharp increase in serum aspartate transaminase (AST) and alanine transaminase (ALT) activities, tumor necrosis factor-α (TNF-α), irreducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB) and interleukin-1ß (IL-1ß) levels. Histopathological examination demonstrated severe hepatocyte necrosis and the destruction of architecture in liver lesions. Immunohistochemical staining and western blot analysis suggested an accumulation of iNOS, NF-κB, IL-1ß and TNF-α expression. Maltol, when administered to mice for 15 days, can significantly improve these deleterious changes. In addition, TUNEL and Hoechst 33258 staining showed that a liver cell nucleus of a model group diffused uniform fluorescence following CCl4 injection. Maltol pretreatment groups did not show significant cell nuclear condensation and fragmentation, indicating that maltol inhibited CCl4-induced cell apoptosis. By evaluating the liver catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) activity, and further using a single agent to evaluate the oxidative stress in CCl4-induced hepatotoxicity by immunofluorescence staining, maltol dramatically attenuated the reduction levels of hepatic CAT, GSH and SOD, and the over-expression levels of CYP2E1 and HO-1. In the mouse model of CCl4-induced liver injury, we have demonstrated that the inflammatory responses were inhibited, the serum levels of ALT and AST were reduced, cell apoptosis was suppressed, and liver injury caused by CCl4 was alleviated by maltol, demonstrating that maltol may be an efficient hepatoprotective agent.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/lesões , Pironas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aromatizantes/uso terapêutico , Glutationa/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
7.
Int Immunopharmacol ; 59: 21-30, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621733

RESUMO

Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetaminofen/toxicidade , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Panax , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA