Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902887

RESUMO

Immune escape is the major reason for immunotherapy failure in stomach adenocarcinoma (STAD). We tried to reveal the underlying mechanism of FGL1 influencing STAD in this study. Bioinformatics analyses were conducted to analyze the expression of FGL1, the signaling pathways affected by FGL1, and the relation between FGL1 and immune cell infiltration. Quantitative real-time PCR (qRT-PCR), cell counting kit-8 assay, colony formation assay, flow cytometry and Transwell assay were adopted to analyze FGL1 expression, cell viability, cell proliferation, cell apoptosis, and cell invasion, respectively. Enzyme-linked immunosorbent assay, lactate dehydrogenase method, qRT-PCR and Western blot were adopted to reveal proinflammatory cytokine expression, cytotoxicity and mRNA and protein expression of the Notch signaling-related genes, respectively, after co-culture of STAD cells and CD8+T cells. Nude mice experiment was conducted to validate the results obtained above. FGL1 expressed highly in STAD and could activate the Notch signaling pathway, and it was negatively correlated with CD8+T cell infiltration. Cell experiments confirmed that high expression of FGL1 facilitated proliferation and hindered apoptosis of STAD cells. Knockdown of FGL1 could facilitate expression of pro-inflammatory factors and the cytotoxicity of CD8+T cells in co-culture system of STAD and CD8+ T cells. Knockdown of FGL1 could suppress the expression of the Notch signaling pathway-related genes, and the addition of Notch inhibitor proved that FGL1 promoted immune escape via the Notch signaling pathway. This study investigated the influence of FGL1 on STAD immune escape and demonstrated that FGL1 inhibited CD8+ T cell activation by activating the Notch signaling pathway and thus promoted tumor immune escape in STAD, providing a new potential diagnostic marker and therapeutic target for the immunotherapy of STAD patients.

2.
Biomed Res Int ; 2022: 3439010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467876

RESUMO

Objective: Asthma (AS) is a chronic inflammatory disease of the airway, and macrophages contribute to AS remodeling. Our study aims at screening macrophage-related gene signatures to build a risk prediction model and explore its predictive abilities in AS diagnosis. Methods: Three microarray datasets were downloaded from the GEO database. The Limma package was used to screen differentially expressed genes (DEGs) between AS and controls. The ssGSEA algorithm was used to determine immune cell proportions. The Pearson correlation coefficient was computed to select the macrophage-related DEGs. The LASSO and RFE algorithms were implemented to filter the macrophage-related DEG signatures to establish a risk prediction model. Receiver operating characteristic (ROC) curves were used to assess the diagnostic ability of the prediction model. Finally, the qPCR was used to detect the expression of selected differential genes in sputum from healthy people and asthmatic patients. Results: We obtained 1,189 DEGs between AS and controls from the combined datasets. By evaluating immune cell proportions, macrophages showed a significant difference between the two groups, and 439 DEGs were found to be associated with macrophages. These genes were mainly enriched in the gene ontology-biological process of immune and inflammatory responses, as well as in the KEGG pathways of cytokine-cytokine receptor interaction and biosynthesis of antibiotics. Finally, 10 macrophage-related DEG signatures (EARS2, ATP2A2, COLGALT1, GART, WNT5A, AK5, ZBTB16, CCL17, ADORA3, and CXCR4) were screened as an optimized gene set to predict AS diagnosis, and they showed diagnostic abilities with AUCs of 0.968 and 0.875 in ROC curves of combined and validation datasets, respectively. The mRNA expressions of EARS2, ATP2A2, COLGALT1, and GART in the control group were higher than in AS group, while the expressions of WNT5A, AK5, ZBTB16, CCL17, ADORA3, and CXCR4 in the control group were lower than that in the AS group. Conclusion: We proposed a diagnostic model based on 10 macrophage-related genes to predict AS risk.\.


Assuntos
Asma , Humanos , Asma/diagnóstico , Asma/genética , Macrófagos , Escarro , Ontologia Genética , Contagem de Leucócitos
3.
Bioorg Med Chem ; 42: 116219, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077853

RESUMO

Covalent target modulation with small molecules has been emerging as a promising strategy for drug discovery. However, covalent inhibitory antibody remains unexplored due to the lack of efficient strategies to engineer antibody with desired bioactivity. Herein, we developed an intracellular selection method to generate covalent inhibitory antibody against human rhinovirus 14 (HRV14) 3C protease through unnatural amino acid mutagenesis along the heavy chain complementarity-determining region 3 (CDR-H3). A library of antibody mutants was thus constructed and screened in vivo through co-expression with the target protease. Using this screening strategy, six covalent antibodies with proximity-enabled bioactivity were identified, which were shown to covalently target HRV14-3C protease with high inhibitory potency and exquisite selectivity. Compared to structure-based rational design, this library-based screening method provides a simple and efficient way for the discovery and engineering of covalent antibody for enzyme inhibition.


Assuntos
Proteases Virais 3C/antagonistas & inibidores , Anticorpos/farmacologia , Regiões Determinantes de Complementaridade/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Rhinovirus/enzimologia , Proteases Virais 3C/metabolismo , Anticorpos/química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
4.
Mol Med ; 27(1): 51, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039257

RESUMO

Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais
5.
Circulation ; 139(19): 2260-2277, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773021

RESUMO

BACKGROUND: Elevated levels of S-adenosylhomocysteine (SAH), the precursor of homocysteine, are positively associated with the risk of cardiovascular disease and with the development and progression of atherosclerosis. However, the role of SAH in endothelial dysfunction is unclear. METHODS: Apolipoprotein E-deficient ( apoE-/-) mice received dietary supplementation with the SAH hydrolase (SAHH) inhibitor adenosine dialdehyde or were intravenously injected with a retrovirus expressing SAHH shRNA. These 2 approaches, along with the heterozygous SAHH gene knockout ( SAHH+/-) mouse model, were used to elevate plasma SAH levels and to examine the role of SAH in aortic endothelial dysfunction. The relationship between plasma SAH levels and endothelial dysfunction was also investigated in human patients with coronary artery disease and healthy control subjects. RESULTS: Plasma SAH levels were increased in SAHH+/- mice and in apoE-/- mice after dietary administration of adenosine dialdehyde or intravenous injection with SAHH shRNA. SAHH+/- mice or apoE-/- mice with SAHH inhibition showed impaired endothelium-dependent vascular relaxation and decreased nitric oxide bioavailability after treatment with acetylcholine; this was completely abolished by the administration of the endothelial nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. Furthermore, SAHH inhibition induced production of reactive oxygen species and p66shc expression in the mouse aorta and human aortic endothelial cells. Antioxidants and p66shc siRNA prevented SAHH inhibition-induced generation of reactive oxygen species and attenuated the impaired endothelial vasomotor responses in high-SAH mice. Moreover, inhibition of SAHH induced hypomethylation in the p66shc gene promoter and inhibited expression of DNA methyltransferase 1. Overexpression of DNA methyltransferase 1, induced by transduction of an adenovirus, was sufficient to abrogate SAHH inhibition-induced upregulation of p66shc expression. Finally, plasma SAH levels were inversely associated with flow-mediated dilation and hypomethylation of the p66shc gene promoter and positively associated with oxidative stress levels in patients with coronary artery disease and healthy control subjects. CONCLUSIONS: Our findings indicate that inhibition of SAHH results in elevated plasma SAH levels and induces endothelial dysfunction via epigenetic upregulation of the p66shc-mediated oxidative stress pathway. Our study provides novel molecular insight into mechanisms of SAH-associated endothelial injury that may contribute to the development of atherosclerosis. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifier: NCT03345927.


Assuntos
Adenosil-Homocisteinase/metabolismo , Aterosclerose/metabolismo , Doença da Artéria Coronariana/metabolismo , Endotélio Vascular/fisiologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/genética , Idoso , Animais , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Estresse Oxidativo , RNA Interferente Pequeno/genética , S-Adenosil-Homocisteína/sangue , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
6.
Cell Chem Biol ; 23(6): 727-37, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27291402

RESUMO

S-Nitrosoglutathione (GSNO) is an endogenous transnitrosation donor involved in S-nitrosation of a variety of cellular proteins, thereby regulating diverse protein functions. Quantitative proteomic methods are necessary to establish which cysteine residues are most sensitive to GSNO-mediated transnitrosation. Here, a competitive cysteine-reactivity profiling strategy was implemented to quantitatively measure the sensitivity of >600 cysteine residues to transnitrosation by GSNO. This platform identified a subset of cysteine residues with a high propensity for GSNO-mediated transnitrosation. Functional characterization of previously unannotated S-nitrosation sites revealed that S-nitrosation of a cysteine residue distal to the 3-hydroxyacyl-CoA dehydrogenase type 2 (HADH2) active site impaired catalytic activity. Similarly, S-nitrosation of a non-catalytic cysteine residue in the lysosomal aspartyl protease cathepsin D (CTSD) inhibited proteolytic activation. Together, these studies revealed two previously uncharacterized cysteine residues that regulate protein function, and established a chemical-proteomic platform with capabilities to determine substrate specificity of other cellular transnitrosation agents.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Catepsina D/química , Catepsina D/metabolismo , Proteômica , 3-Hidroxiacil-CoA Desidrogenases/isolamento & purificação , Humanos , Células MCF-7 , Nitrosação
7.
Mol Biosyst ; 12(8): 2471-80, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27216279

RESUMO

Glucose metabolism and mitochondrial function are closely interconnected with cellular redox-homeostasis. Although glucose starvation, which mimics ischemic conditions or insufficient vascularization, is known to perturb redox-homeostasis, global and individual protein glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. In this report, we use our clickable glutathione approach, which forms clickable glutathione (azido-glutathione) by using a mutant of glutathione synthetase (GS M4), for detection and identification of protein glutathionylation in response to glucose starvation. We found that protein glutathionylation is readily induced in HEK293 cells in response to low glucose concentrations when mitochondrial reactive oxygen species (ROS) are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Proteomic and biochemical analysis identified over 1300 proteins, including SMYD2, PP2Cα, and catalase. We further showed that PP2Cα is glutathionylated at C314 in a C-terminal domain, and PP2Cα C314 glutathionylation disrupts the interaction with mGluR3, an important glutamate receptor associated with synaptic plasticity.


Assuntos
Glucose/metabolismo , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Catálise , Domínio Catalítico , Expressão Gênica , Glutationa Sintase/química , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2C/química , Proteína Fosfatase 2C/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
8.
Biochim Biophys Acta ; 1844(12): 2315-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25291386

RESUMO

The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome. Several chemical-proteomic platforms have evolved to study these modifications and enable a better understanding of the diversity of proteins that are regulated by cysteine PTMs. These platforms include: (1) chemical probes to selectively tag PTM-modified cysteines; (2) differential labeling platforms that selectively reveal and tag PTM-modified cysteines; (3) lipid, isoprene and LDE derivatives containing bioorthogonal handles; and (4) cysteine-reactivity profiling to identify PTM-induced decreases in cysteine nucleophilicity. Here, we will provide an overview of these existing chemical-proteomic strategies and their effectiveness at identifying PTM-modified cysteine residues within native biological systems.

9.
Mol Cell ; 51(3): 397-404, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23911929

RESUMO

Redox control of protein function involves oxidation and reduction of amino acid residues, but the mechanisms and regulators involved are insufficiently understood. Here, we report that in conjunction with Mical proteins, methionine-R-sulfoxide reductase B1 (MsrB1) regulates mammalian actin assembly via stereoselective methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin are specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by selenoprotein MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilize this redox control during cellular activation by stimulating MsrB1 expression and activity as a part of innate immunity. We identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study shows that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation.


Assuntos
Actinas/metabolismo , Macrófagos/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Oxirredução , Estresse Oxidativo , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA