Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSystems ; : e0026224, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904378

RESUMO

Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE: K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.

2.
Chem Sci ; 15(24): 9345-9352, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903234

RESUMO

Methylation of microRNAs (miRNAs) is a post-transcriptional modification that affects miRNA activity by altering the specificity of miRNAs to target mRNAs. Abnormal methylation of miRNAs in cancer suggests their potential as a tumor marker. However, the traditional methylated miRNA detection mainly includes mass spectrometry, sequencing and others; complex procedures and reliance on large instruments greatly limit their application in point-of-care testing (POCT). Based on this, we developed DNAzyme-RCA-based gold nanoparticle (AuNP) colorimetric and lateral flow dipstick (LFD) assays to achieve convenient detection of exosomal 5-methylcytosine miRNA-21 (m5C-miRNA-21) for the first time. The two assays achieved specific recognition and linear amplification of m5C-miRNA-21 through the DNAzyme triggered RCA reaction and color output with low background interference through AuNP aggregation induced by base complementary pairing. The lowest concentration of m5C-miRNA-21 visible to the naked eye of the two assays can reach 1 pM and 0.1 pM, respectively. Detection of exosomal m5C-miRNA-21 in clinical blood samples showed that the expression level of m5C-miRNA-21 in colorectal cancer patients was significantly higher than that in healthy individuals. This approach not only demonstrates a new strategy for the detection of colorectal cancer but also provides a reference for the development of novel diagnostic tools for other miRNA methylation-related diseases.

3.
J Cachexia Sarcopenia Muscle ; 15(1): 81-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018317

RESUMO

BACKGROUND: Sepsis-associated muscle weakness is common in patients of intensive care units (ICUs), and it is closely associated with poor outcomes. The mechanism of sepsis-induced muscle weakness is unclear. Recent studies have found that gut microbiota and metabolites are involved in the regulation of skeletal muscle mass and metabolism. This study aimed to investigate the effects of gut microbiota and metabolites on sepsis-associated muscle weakness. METHODS: In a lipopolysaccharide (LPS)-induced inflammation mouse model, mice with different sensitivities to LPS-induced inflammation were considered as donor mice for the faecal microbiota transplantation (FMT) assay, and recipient mice were divided into sensitive (Sen) and resistant (Res) groups. Skeletal muscle mass and function, as well as colonic barrier integrity were tested and gut microbiota and metabolite composition were analysed in both groups of mice. The effect of intestinal differential metabolite vitamin K1 on LPS-triggered muscle damage was investigated, and the underlying mechanism was explored. RESULTS: Recipients exhibited varying LPS-triggered muscle damage and intestinal barrier disruption. Tibialis anterior (TA) muscle of Sen exhibited upregulated expression levels of MuRF-1 (0.825 ± 0.063 vs. 0.304 ± 0.293, P = 0.0141) and MAFbx (1.055 ± 0.079 vs. 0.456 ± 0.3, P = 0.0092). Colonic tight junction proteins ZO-1 (0.550 ± 0.087 vs. 0.842 ± 0.094, P = 0.0492) and occludin (0.284 ± 0.057 vs. 0.664 ± 0.191, P = 0.0487) were significantly downregulated in the Sen group. Metabolomic analysis showed significantly higher vitamin K1 in the faeces (P = 0.0195) and serum of the Res group (P = 0.0079) than those of the Sen group. After vitamin K1 intervention, muscle atrophy-related protein expression downregulated (P < 0.05). Meanwhile SIRT1 protein expression were upregulated (0.320 ± 0.035 vs. 0.685 ± 0.081, P = 0.0281) and pNF-κB protein expression were downregulated (0.815 ± 0.295 vs. 0.258 ± 0.130, P = 0.0308). PI3K (0.365 ± 0.142 vs. 0.763 ± 0.013, P = 0.0475), pAKT (0.493 ± 0.159 vs. 1.183 ± 0.344, P = 0.0254) and pmTOR (0.509 ± 0.088 vs. 1.110 ± 0.190, P = 0.0368) protein expression levels were upregulated in TA muscle. Meanwhile, vitamin K1 attenuated serum inflammatory factor levels. CONCLUSIONS: Vitamin K1 might ameliorate LPS-triggered skeletal muscle damage by antagonizing NF-κB-mediated inflammation through upregulation of SIRT1 and regulating the balance between protein synthesis and catabolism.


Assuntos
Transplante de Microbiota Fecal , Sepse , Humanos , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Sirtuína 1 , Vitamina K 1/efeitos adversos , Inflamação , Músculo Esquelético , Debilidade Muscular
4.
Microbiol Spectr ; 10(5): e0037822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121239

RESUMO

BolA has been characterized as an important transcriptional regulator, which is induced in the stationary phase of growth and is often associated with bacterial virulence. This study was initiated to elucidate the role of the BolA in the virulence of K. pneumoniae. Using a mouse infection model, we revealed bolA mutant strain yielded significantly decreased bacterial loads in the liver, spleen, lung, and kidney, and failed to form liver abscesses. Gene deletion demonstrated that the bolA was required for siderophore production, biofilm formation, and adhesion to human colon cancer epithelial cells HCT116. Quantitative reverse transcriptase PCR (RT-qPCR) indicated that BolA could impact the expression of pulK, pulF, pulE, clpV, vgrG, entE, relA, and spoT genes on a genome-wide scale, which are related to type II secretion system (T2SS), type VI secretion system (T6SS), guanosine tetraphosphate (ppGpp), and siderophore synthesis and contribute to fitness in the host. Furthermore, the metabolome analysis showed that the deletion of the bolA gene led to decreased pools of five metabolites: biotin, spermine, cadaverine, guanosine, and flavin adenine dinucleotide, all of which are involved in pathways related to virulence and stress resistance. Taken together, we provided evidence that BolA was a significant virulence factor in the ability of K. pneumoniae to survive, and this was an important step in progress to an understanding of the pathways underlying bacterial virulence. IMPORTANCE BolA has been characterized as an important transcriptional regulator, which is induced in the stationary phase of growth and affects different pathways directly associated with bacterial virulence. Here, we unraveled the role of BolA in several phenotypes associated with the process of cell morphology, siderophore production, biofilm formation, cell adhesion, tissue colonization, and liver abscess. We also uncovered the importance of BolA for the success of K. pneumoniae infection and provided new clues to the pathogenesis strategies of this organism. This work constitutes a relevant step toward an understanding of the role of BolA protein as a master regulator and virulence factor. Therefore, this study is of great importance for understanding the pathways underlying K. pneumoniae virulence and may contribute to public health care applications.


Assuntos
Infecções por Klebsiella , Abscesso Hepático , Sistemas de Secreção Tipo II , Sistemas de Secreção Tipo VI , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Guanosina Tetrafosfato/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sideróforos/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Cadaverina/metabolismo , Biotina , Espermina/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Guanosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia
5.
Research (Wash D C) ; 2021: 9862876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541546

RESUMO

Recently, combination immunotherapy, which incorporates the activation of the immune system and inhibition of immune escape, has been proved to be a new powerful strategy for more efficient tumor suppression compared to monotherapy. However, the major challenge is how to integrate multiple immune drugs together and efficiently convey these drugs to tumor sites. Although a variety of nanomaterials have been exploited as carriers for targeting tumor issues and the delivery of multiple drugs, their potential toxicity, immune rejection, and stability are still controversial for clinical application. Here, we proposed endogenic exosomes as drug carriers to deliver two antibodies acting as tumor-targeting molecules and block checkpoint inhibitors with specific response to the tumor microenvironment and costimulatory molecules for further improvement of therapeutic effect. The versatile exosomes exhibit excellent biocompatibility and provide a combination immunotherapy platform with synergistic advantages of activation of immune response and inhibition of immune escape.

6.
Microb Pathog ; 160: 105162, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461245

RESUMO

Heteroresistance is a poorly understood mechanism of resistance which refers to a phenomenon where there are different subpopulations of seemingly isogenic bacteria which exhibit a range of susceptibilities to a particular antibiotic. In the current study, we identified a multidrug-resistant, carbapenemase-positive K. pneumoniae strain SWMUF35 which was classified as susceptible to amikacin and resistant to meropenem by clinical diagnostics yet harbored different subpopulations of phenotypically resistant cells, and has the ability to form biofilm. Population analysis profile (PAP) indicated that SWMUF35 showed heteroresistance towards amikacin and meropenem which was considered as co-heteroresistant K. pneumoniae strain. In vitro experiments such as dual PAP, dual Times-killing assays and checkerboard assay showed that antibiotic combination therapy (amikacin combined with meropenem) can effectively combat SWMUF35. Importantly, using an in vivo mouse model of peritonitis, we found that amikacin or meropenem monotherapy was unable to rescue mice infected with SWMUF35. Antibiotic combination therapy could be a rational strategy to use clinically approved antibiotics when monotherapy would fail. Furthermore, our data warn that antibiotic susceptibility testing results may be unreliable due to undetected heteroresistance which can lead to treatment failure and the detection of this phenotype is a prerequisite for a proper choice of antibiotic to support a successful treatment outcome.


Assuntos
Amicacina , Carbapenêmicos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Klebsiella pneumoniae , Meropeném/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Falha de Tratamento
7.
Synth Syst Biotechnol ; 6(2): 77-84, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997357

RESUMO

The composition of these vaginal microbiome has a significant impact on women's health. However, few studies have characterized the vaginal microbiome of healthy Chinese women using metagenomic sequencing. Here, we carried out a comparative metagenomic analysis to survey taxonomic, functional levels, and microbial communities' genome content in healthy women's vaginal microbiome. Overall, we observed a total of 111 species, including all dominant vaginal Lactobacillus species, such as L. iners, L. crispatus, L. gasseri, and L. jensenii. Unlike microbial taxa, several pathways were ubiquitous and prevalent across individuals, including adenosine ribonucleotides de novo biosynthesis and pyruvate fermentation to acetate and lactate II. Notably, our diversity analysis confirmed a significant difference in healthy women from different ethnic groups. Moreover, we binned vaginal assemblies into 62 high-quality genomes, including 9 L. iners, 7 A. vaginae, 5 L. jensenii, and 5 L. crispatus. We identified the pan and core genomes of L. iners and A. vaginae and revealed the genetic diversity. Primary differences between strains were the hypothetical genes and mobile element-like genes. Our results provide a framework for understanding the implications of the female reproductive tract's composition and functional potential and highlight the importance of genome-resolved metagenomic analysis to further understand the human vaginal microbiome.

8.
Chemosphere ; 246: 125735, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31911327

RESUMO

Phosphorus and heavy metals are discarded to the domestic sewage in our daily life, it is necessary to find easy methods for phosphorus and heavy metals accumulation. Here, a group of short peptides (ChBpHs) were found to react with hydrogen phosphate forming insoluble substances. ChBpHs are composed by a choline binding peptides (ChBp) and a C-terminal histidine rich tail. The reaction region to hydrogen phosphate was determined at 1-18th amino acid in ChBp. The affinities of ChBpHs are different, with minimum react concentrations of Na2HPO4 ranging from 2 to 12 mM. In addition, the C-terminal histidine tail enables ChBpHs with affinities to metal ions in vitro. Prokaryotic expression of ChBpH1 in Escherichia coli resulted in the reduction of soluble hydrogen phosphate in the culture medium. The accumulation of phosphate is time and concentration dependent, maximum reduction was detected at 24 h post induction (23% in phosphate rich medium and 14% in normal medium). The reduction of nickel ions (about 20%) was only detected after cells were broken. In conclusion, this preliminary investigation of ChBpHs indicates the potential applications for bioconcentration of soluble phosphate in the future.


Assuntos
Metais Pesados/química , Peptídeos/química , Fosfatos/química , Eliminação de Resíduos Líquidos/métodos , Escherichia coli , Histidina , Hidrogênio , Íons , Níquel , Fósforo , Esgotos/química
9.
J Antibiot (Tokyo) ; 71(12): 1025-1030, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30127421

RESUMO

Streptococcus pneumoniae is a pathogen that mainly affects children and elderly individuals. The numerous serotypes and increased resistance to antibiotics make the treatment of pneumococcal infections sometimes difficult. Asymptomatic colonization is the main reservoir for S. pneumoniae, but no vaccine or antibiotic treatment is effective in eliminating this reservoir. Here, we show that a simulated choline binding polypeptide (ChBp) of LytA has antimicrobial activity against S. pneumoniae. ChBp showed specific antimicrobial activity against pneumococcal but not against non-streptococcal strains, and no cytotoxic effect was observed for 293t cell. The minimal inhibitory concentration (MIC) is between 10-25 µg/ml. In addition, we found ChBp functions by binding to the choline in the cell wall with a binding capacity between 3.25 and 7.5 × 10-6g/CFU. The binding cannot kill, but can inhibit the growth of pneumococcal cells for up to 12 h (50 µg/ml). Viable cells were decreased by 50% at 18 h, and eliminated at 36 h of incubation. These results show that ChBp has potential for the treatment of pneumococcal disease, or for eliminating nasopharyngeal colonization.


Assuntos
Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Colina/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/metabolismo , Contagem de Colônia Microbiana , Desenho de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA